

Degasolv

[image: _images/Degasolv.png]
Star Degasolv on Github:

[image: Star this repo]
 [https://github.com/djhaskin987/degasolv]Fork Degasolv on Github:

[image: Fork this repo]
 [https://github.com/djhaskin987/degasolv/fork]

	Why Degasolv?

	Get Degasolv
	Download & Run

	Code

	Support & Problems

	Contributions

	Quickstart

	A Longer Example
	Audience

	The dependencies

	Adding e to the degasolv repo

	Adding d to the degasolv repo

	Adding c to the degasolv repo

	Building a

	Changelog
	Unreleased
	Added

	Changed

	Fixed

	2.2.0
	Added

	Changed

	Fixed

	2.1.0
	Added

	Changed

	Fixed

	2.0.0
	Added

	Changed

	Fixed

	1.12.1
	Added

	Fixed

	1.12.0
	Added

	Changed

	Fixed

	1.11.0
	Added

	Changed

	1.10.0
	Added

	1.9.0
	Added

	Fixed

	1.8.0
	Added

	Changed

	Fixed

	1.7.0
	Added

	Fixed

	1.6.0
	Added

	Improved

	1.5.1
	Added

	Fixed

	1.5.0
	Added

	1.4.0
	Added

	1.3.0
	Added

	1.2.0
	Added

	1.1.0
	Added

	1.0.2

	Command Reference
	Some Notes on Versions

	Top-Level CLI
	Top-Level Usage Page

	A Note on Specifying Files

	Explanation of Options
	Global Options

	Environment Variables

	Using Configuration Files

	How Options are Gathered

	Basic EDN Configuration Usage

	Basic JSON Configuration Usage

	Using Multiple Configuration Files

	Default Configuration Files

	Using Site-Wide Configuration Files

	Security Considerations

	Option Packs

	Print the Help Page

	CLI for display-config
	Usage Page for display-config

	Overview of display-config

	CLI for generate-card
	Usage Page for generate-card

	Overview of generate-card

	Explanation of Options for generate-card
	Specify Location of the Card File

	Specify the ID (Name) of the Package

	Specify the Location of the Package

	Specify Additional Metadata for a Package

	Specify a Requirement for a Package

	Specify a Version for a Package

	Print the generate-card Help Page

	CLI for generate-repo-index
	Usage Page for generate-repo-index

	Overview of generate-repo-index

	Explanation of Options for generate-repo-index
	Specify the Repo Search Directory

	Specify the Repo Index File

	Specify the Index Sort Order

	Specify the Version Comparison Algorithm

	Add to an Existing Repository Index

	CLI for resolve-locations
	Usage Page for resolve-locations

	Overview of resolve-locations

	Explanation of Options for resolve-locations
	Enable the Use of Alternatives

	Disable the Use of Alternatives

	Specify Solution Search Strategy

	Specify Conflict Strategy

	Specify List Strategy

	Enable Error Output Format

	Disable Error Output Format

	Specify Output Format

	Specify that a Package is Already Present

	Specify a Requirement

	Specify a Repository to Search

	Specify a Resolution Strategy

	Specify an Index Strategy

	Specify a Package System

	Specify Subproc Package System Output Format

	Specify the Version Comparison Algorithm

	Specify Subproc Package System Executable

	CLI for query-repo
	Usage Page for query-repo

	Overview of query-repo

	Explanation of Options for query-repo
	Enable Error Output Format

	Disable Error Output Format

	Specify Output Format

	Specify Query

	Specify a Repository to Search

	Specify an Index Strategy

	Specify a Package System

	Specify the Version Comparison Algorithm

	Specifying a requirement
	Comparison Operators

	Examples

	Architecture
	Background

	Core Resolver

	Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Contributing Guide

	Roadmap
	Future Releases

	2.3.0

	Authors and Contributions
	Authors

	Contributions

	3rd Party Licenses

Indices and tables

	Index

	Module Index

	Search Page

Why Degasolv?

Degasolv is a generic dependency resolver that exists independent of
programming languages or systems. You can use it to easily declare
the existence of files that your build depends on, version them, and
retrieve the URLs of files which are of the correct versions. You can
easily use these URLs in your builds to download everything the build
needs.

Since Degasolv is a dependency resolver that is relatively
technology-agnostic, you can declare dependencies between components
that are not of the same technology. You can declare that a DLL
depends on a pip package, or that in order to use an NPM package, a
certain ruby gem file must be present as well.

Often when building software, multiple different components from
multiple different teams must be used to create a larger build
artifact. These components are “released” by different teams, and
these teams each use different technologies, or the teams themselves
do not use a dependency manager. As a build engineer, it’s your job to
bring all of these components together to make the build
work. Degasolv helps you do this. Some exmamples of people who might
use degasolv are below. For a more detailed example, see Some Useful Recipes.

	Sravan, a build engineer, is repsponsible for the deployment
pipeline of his company’s cloud offering. There are several
components created by different teams within his company, using
totally different technologies: docker images, VM templates, and
even PXE files are used to deploy different parts of the cloud
stack. Each come from a different team, and each are released on
different schedules. Sravan uses degasolv to version and track
these artifacts and define relationships between them. He
uses a CI build to get the URLs of every VM template, docker
image, and PXE file, and places all these in a zip file which
represents his entire cloud stack as a standalone build artifact,
which can be promoted through environments and run through QA with
minimal effort.

	Sheila, a build engineer, is responsible for the build of an
microsoft installer which installs her company’s product. The
installer contains python components, native code components, and
ruby components. The installer also takes files from a
self-extracting tarball created by a third-party vendor, which has
its own dependencies. With degasolv, Sheila can track all of these
files independently of where the files are actually located, and
she can use degasolv to tell her the exact files she needs for her
build.

	Daryl, a build engineer, is responsible for building a native code
library (DLL or SO) file from the native code output from multiple
teams. Each team releases their code as a zip file or tarball, but
haven’t realy adopted a formal dependency resolver in their
builds. Further, they are building code for microsoft as well as
linux, and MSBuild files only support relative paths when
referring to dependencies in a build. Daryl puts the zip archives
on his NAS, and uses degasolv to resolve the dependencies of the
library. Degasolv returns URLs for all the packages to Daryl, who
then uses them in a script to download them and place them in the
directories where they can be found by the MSBuild files. The
build works flawlessly ;)

Get Degasolv

Download & Run

Degasolv comes in the form of a .jar file, downloadable from GitHub [https://github.com/djhaskin987/degasolv/releases].

As of version 1.8.0, it also comes in the form of an RPM or Debian package.

To get the RPM, add the CentOS bintray [https://bintray.com/degasolv/centos/degasolv] repository:

wget https://bintray.com/degasolv/centos/rpm -O bintray-degasolv-centos.repo
sudo mv bintray-degasolv-centos.repo /etc/yum.repos.d/
yum clean all
yum makecache

To get the debian package, add the Ubuntu bintray [https://bintray.com/degasolv/ubuntu/degasolv] repository:

curl -L https://bintray.com/user/downloadSubjectPublicKey?username=degasolv | \
 sudo apt-key add -
echo "deb https://dl.bintray.com/degasolv/ubuntu stable main" | \
 sudo tee -a /etc/apt/sources.list.d/bintray-degasolv-ubuntu.list

To use it, you need java installed. Degasolv can be run like this:

java -jar ./degasolv-<version>-standalone.jar

Or, if you are using an OS package, it can be run simply like this:

degasolv

Code

Degasolv lives out on Github [https://github.com/djhaskin987/degasolv].

Support & Problems

If you have a hard time using Degasolv to resolve dependencies within
builds, it is a bug! Please do not hesitate to let the authors know
via GitHub issue [https://github.com/djhaskin987/degasolv/issues] :).

You can also talk to us using Gitter [https://gitter.im/degasolv/Lobby] or the Google Group “degasolv-users” [https://groups.google.com/forum/#!forum/degasolv-users].

Contributions

Please contribute to Degasolv! Pull requests [https://github.com/djhaskin987/degasolv/pulls] are most welcome. Please
have a look at the Contributing Guide first.

Quickstart

This quickstart is meant to be illustrative. For ideas on how to use degasolv
in real life, have a look at Some Useful Recipes.

Given these artifacts:

	http://example.com/repo/a-1.0.zip

	http://example.com/repo/b-2.0.zip

	http://example.com/repo/b-3.0.zip

	Generate dscard files to represent them in a degasolv respository,
like this:

$ java -jar degasolv-<version>-standalone.jar generate-card \
 --id "a" \
 --version "1.0" \
 --location "https://example.com/repo/a-1.0.zip" \
 --requirement "b>2.0" \
 --card-file "$PWD/a-1.0.zip.dscard"

$ java -jar degasolv-<version>-standalone.jar generate-card \
 --id "b" \
 --version "2.0" \
 --location "https://example.com/repo/b-2.0.zip" \
 --card-file "$PWD/b-2.0.zip.dscard"

$ java -jar degasolv-<version>-standalone.jar generate-card \
 --id "b" \
 --version "3.0" \
 --location "https://example.com/repo/b-3.0.zip" \
 --card-file "$PWD/b-2.0.zip.dscard"

	Generate a dsrepo file from the cards:

$ java -jar degasolv-<version>-standalone.jar \
 generate-repo-index \
 --search-directory $PWD \
 --index-file $PWD/index.dsrepo

	Then use the dsrepo file to resolve dependencies:

$ java -jar degasolv-<version>-standalone.jar \
 resolve-locations \
 --repository $PWD/index.dsrepo \
 --requirement "b"

This should return something like this:

a==1.0 @ http://example.com/repo/a-1.0.zip
b==3.0 @ http://example.com/repo/b-3.0.zip

To see the help page, call degasolv or any of its subcommands with the
-h option. If this is your first time using degasolv, it’s
recommended that you read Some Useful Recipes.

A Longer Example

Audience

This example is written for build and devops engineers who are
responsible for the builds from a number of projects. These builds
produce files that will here be called “artifacts”. The goal in this
example will be to declare dependencies between different builds and
have the depenencies for each project’s build downloaded automatically
as part of the build. Under normal circumstances, a package manager
would be used to do this; however, sometimes this is not
possible. This example in particular illustrates how degasolv can be
used to resolve dependencies between zip files, which do not carry
dependency information.

The dependencies

In this example, suppose that you keep the artifacts for your builds,
all zip files, stored on an auto-indexed HTTP server called
reposerver, which serves the files at the URL
http://example.com/repo/. These builds depend on the presence of
artifacts from other builds to complete successfully. The dependency
tree looks like this:

[image: digraph G { a -> b; b -> c; b -> d; d -> e; c -> e; }]

For example, in order to build the artifact for a, there must
first be artifacts generated by the b, c, d, and e
builds present in the build directory.

The complication here is that each project above has generated
artifacts at different versions. To be short in writing, we will
denote the artifact generated by the build for a at version
1.0.0 as a@1.0.0.

In our example, there was a recent breaking change to a. Where
artifacts a@1.9.0 worked fine with all previous versions of
artifacts for b, the newer a@2.1.0 only works with b@2.3.0
or greater. Since the 2.0.0 line of b came out, it relies on
the newer c@3.5.0, and the ancient-but-still-used d, the only
version of which was published as d@0.5.0. The last time d was
touched, the newest version of e was 1.1.0; however, the newer
c@3.5.0 relies on the fact that the artifact for e must be at
least at version 1.8.0 or newer. There are three published
artifacts at different versions for e: e@1.8.0, e@2.1.0,
and e@2.4.0. Only the e@1.8.0 version of e is backwards
compatible with e@1.1.0 and so it is the only version which will
satisfy all of the build-time dependencies for a.

Adding e to the degasolv repo

The first step is to build e, since it is at the bottom of our
dependency tree. In our example, when we build e, we mean that we
are generating the file e-<version>.zip using the source code for
e. Let’s say that we have as part of this build already created
e, at the version of 1.8.0. We might have a file called
degasolv.edn somewhere in our source code repository for e. We
can use this file to specify options to degasolv, including
repositories, requirements, etc. of the build. The file will be simple
for e, though, since e has no other dependencies. It might
look like this:

; filename: degasolv.edn
{
 :id "e"
 :version "1.8.0"
}

During the build of e, we push the build artifact e-1.8.0.zip
to the reposerver so that it can be downloaded at
https://example.com/repo/e-1.8.0.zip. Then, we generate a
dscard file for e. This file will represent e in a
degasolv repository. It is done like this:

$ java -jar degasolv-<version>-standalone.jar \
 generate-card \
 --location "https://example.com/repo/e-1.8.0.zip" \
 --output-file "e-1.8.0.zip.dscard"

Note that it is good practice to name the output file after the name
of the file that the card will be representing in the degasolv
respository.

This will create a file called e-1.8.0.zip.dscard. We would then
copy this file up to the reposerver:

$ rsync e-1.8.0.zip.dscard user@reposerver:/var/www/repo/

Once the card is added to the repo on the repo server, a command
is run on the server to generate (or update) a degasolv repository
index:

$ ssh user@reposerver
$ cd /var/www/repo
$ java -jar ./degasolv-<version>-standalone.jar \
 generate-repo-index \
 --search-directory /var/www/repo \
 --output-file /var/www/repo/index.dsrepo

This command takes all of the package information from all of the
degasolv card files found under /var/www/repo and adds this
information to the repository index
/var/www/repo/index.dsrepo. Once this is done, the package e
is listed as available in the degasolv respository index. We can check
that listing e@1.8.0 as available in the index was successful by
querying the index from any machine that can see the index.dsrepo
file on the reposerver, like this:

$ java -jar ./degasolv-<version>-standalone.jar \
 query-repo \
 --repository "https://example.com/repo/index.dsrepo" \
 --query "e"

Supposing that multiple versions of e is in the repository, its output
will look like this:

e==1.8.0 @ https://example.com/repo/e-1.8.0.zip
e==2.1.0 @ https://example.com/repo/e-2.1.0.zip
e==2.4.0 @ https://example.com/repo/e-2.4.0.zip

We can see that the version of e we were building, namely
1.8.0, is now in the repository index. We now know that the
repository index has been properly updated.

Adding d to the degasolv repo

In our example, d is ancient, and not built anymore in our
environment; however, it is still used in other builds. We will not
use a degasolv.edn file for it, because there is nowhere to commit
such a file to source. We will simply generate a dscard file for
it using command line options:

$ java -jar degasolv-<version>-standalone.jar \
 generate-card \
 --id "d" \
 --version "0.5.0" \
 --location "https://example.com/repo/d-0.5.0.zip" \
 --requirement "e>=1.00,<2.0.0" \
 --output-file "d-0.8.0.zip.dscard"

Note that we can either use command-line options or config file keys
to specify the information that degasolv needs.

We then copy the newly created d-0.5.0.zip.edn file up to the
server and use it to update the repository index in the same way as
for e above.

Adding c to the degasolv repo

The c artifact (zip file) represents a project that is being
actively built and developed, so we will create a degasolv.edn
file and commit it to the source repository for c. The build for
c relies on the e artifact being present, so we will resolve that
dependency before we start the build for c. Then, when we
build the c project, we will create its corresponding degasolv
card file as part of the build, like we did with e.

First, we commit its degasolv.edn file to source code. It might
look like this:

; filename: degasolv.edn
{
 :id "c"
 :version "3.5.0"
 :requirements ["e>=1.8.0"]
 :repositories ["https://example.com/repo/index.dsrepo"]
}

As mentioned earlier, c needs the e artifact in order to
build. We will use degasolv as part of c build script to
download the most recent version fitting the requirement for e
like this:

$ java -jar degasolv-<version>-standalone.jar \
 resolve-locations

This command is run from the same directory where degasolv.edn
resides. It will return output looking something like this:

e==1.8.0 @ https://example.com/repo/e-1.8.0.zip

We can use this output in a script to download and unzip the zip file
so that it can be used as part of the build for c like this:

#!/bin/sh

java -jar degasolv-<version>-standalone.jar -c ./degasolv.edn \
 resolve-locations | while read pkg
do
 spec=$(echo "${pkg}" | awk -F ' @ ' '{print $1}')
 name=$(echo "${spec}" | awk -F '==' '{print $1}')
 version=$(echo "${spec}" | awk -F '==' '{print $2}')
 url=$(echo "${pkg}" | awk -F ' @ ' '{print $2}')
 curl -o ${name}-${version}.zip -L ${url}
 unzip ${name}.zip
done

This stanza can be used in a build script to download all of the
dependencies for c and unzip them in the current directory.

At the end of the build for c, we can create the degasolv card
file for c like this:

$ java -jar degasolv-<version>-standalone.jar \
 generate-card \
 --location "https://example.com/repo/c-3.5.0.zip" \
 --output-file "c-3.5.0.zip.dscard"

Then we upload this file to our http server and use it to update the
index.dsrepo degasolv repository index file in the same way as
what we did during the build for e.

Let us now suppose that we have repeated these steps for the build
artifacts of b. Then all of the projects except for a which
are mentioned at the beginning of this example will have had artifacts
built from their builds and entries created in the degasolv
respository index for their artifacts.

Building a

Now suppose that we are building a. In our example, the build
artifact for a need not be uploaded to the zip file repository,
because a represents our final product, and the build for a
will generate an artifact that will be handed off to Project
Management or Ops for later release. We don’t need it for any other
builds. While we are not (in this trivial example) not interested in
uploading it to the repo, we are interested in resolving its
dependencies, downloading them, and using them to build the final
product.

Just like some of our previously described builds in this example, we
will put a file called degasolv.edn in the root of the git
repository associated with building a. It might look like this:

; filename: degasolv.edn
{
 :id "a"
 :version "2.1.0"
 :file-name "a-2.1.0.zip"
 :requirements ["b>2.0"]
 :repositories ["https://example.com/repo/index.dsrepo"]
}

Then, as in the script used to build the artifact for a,
we resolve its dependencies and download them, just as we did when we built
e:

#!/bin/sh

java -jar degasolv-<version>-standalone.jar -c ./degasolv.edn \
 resolve-locations | while read pkg
do
 spec=$(echo "${pkg}" | awk -F ' @ ' '{print $1}')
 name=$(echo "${spec}" | awk -F '==' '{print $1}')
 version=$(echo "${spec}" | awk -F '==' '{print $2}')
 url=$(echo "${pkg}" | awk -F ' @ ' '{print $2}')
 curl -o ${name}-${version}.zip -L ${url}
 unzip ${name}.zip
done

This will resolve all of the dependencies for a, download them,
and unzip them. The rest of the build process for a can then
continue as normal.

Changelog

All notable changes to this project will be documented here.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/djhaskin987/degasolv/compare/2.2.0...HEAD]

Added

	Added packrat-install-graph, a packrat-compliant install graph,
to the JSON output

	Separated CLI uberjar from library jar, both dependencies and source.
Now degasolv can be included as a dependency and its resolver used elsewhere.

	Added capability to build using graalvm, allowing for statically compiled
builds

Changed

Fixed

2.2.0 [https://github.com/djhaskin987/degasolv/compare/2.1.0...2.2.0]

Added

	Configuration file tower: Degasolv looks for config files in pre-defined
locations on the file system if they exist, see
Default Configuration Files.

	Environment variable support: environment variables are consulted first,
but are merged into the option map AFTER config file material and BEFORE
any given command line options, see
Environment Variables and
How Options are Gathered

	Added support for HTTP/HTTPS authentication using basic, oauth2 token
and header methods, see A Note on Specifying Files.

Changed

	Removed deprecated, unused function degasolv.util.assoc-conj

Fixed

	Option packs are expanded at the level upon which they are defined, then the
options are merged together. This seemed like a bug that needed fixing.
See Option Packs for more information.

2.1.0 [https://github.com/djhaskin987/degasolv/compare/2.0.0...2.1.0]

Added

	Added “version suggestion”, a performance enhancement allowing for minimum
version selection

	Added the :index-sort-order option to generate-repo-index,
allowing users to specify ascending or descending. Previously
only descending was supported. With this new option,
users will be able to use Degasolv in a minimum version selection
configuration.

	If the reason for failure in the resolve-dependencies function
is :present-package-conflict, add a key :package-present-by with
value as either :found meaning the package was in conflict with a package
found during resolution, or with value as :given meaning the package
was in conflict with a package given via the parameter present-packages.

Changed

	Removed the deprecated functions ->requirement, ->package, and
->version-predicate from usage in the code base.

	Removed dbg2 macro in favor of keeping dbg

Fixed

	Standardized capitalization of the word “Degasolv” to be title case for
consistency in the documentation unless it is in a code snippet.

	Fix #16

	Fix spec for package id’s. This should have the effect of enforcing that
names should not have >, <, !, =, ,, ;, or |
characters in them. This simply has the effect of changing the error message,
as this was never allowed but handled poorly.

2.0.0 [https://github.com/djhaskin987/degasolv/compare/1.12.1...2.0.0]

Added

	Documentation saying what return codes are given and what they mean.

	For #15, added ability to specify output format for display-config.

	Added 3rd Party Licenses document

Changed

	In the docs, java -jar degasolv-<version>-standalone.jar changed to
degasolv with added note for clarity

	For #13, return code for resolve-locations changed to 3 when dependency
resolutions occur to distinguish them from normal “you got the argument
string wrong” errors

	Default --{enable|disable}-error-format set to enabled for
resolve-locations and
query-repo.

	Default for --list-strat option for resolve-locations set to lazy, a much saner default.

	Option pack v1 added to help administrators
keep compatibility with version 1 of Degasolv if required.

	Default for the --version-comparison option when --package-system
is degasolv set to semver for
generate-repo-index (option here), resolve-locations (option here)
and query-repo (option here).

	Removed less-than-useful warning about absent config files.

Fixed

	Fixed #14, “Degasolv pulls in X”

	Fixed bug where display-config didn’t allow the user
to specify valid options for other things, now it does

	Fixed bug where index.dsrepo didn’t generate anything except
an empty map inside the file. This was completely broken.

	Fixed #6, “If one config file fails to load, the rest do as well”

	Fixed #9, “Heading for ‘Specifying Subproc Executable’ is wrong in docs”

	Fixed #10, “How do you specify requirements of a package (deps) in the output
of a subproc to Degasolv?”

1.12.1 [https://github.com/djhaskin987/degasolv/compare/1.12.0...1.12.1]

1.12.1 was strictly a docs release. No code changes were made and no runnable
artifacts were created.

Added

	Added authors file to docs

Fixed

	Fixed changelog so that the 1.12.0 release was present in the document

	Fixed package system subheaders in command reference

1.12.0 [https://github.com/djhaskin987/degasolv/compare/1.11.0...1.12.0]

Added

	Added the --{enable|disable}-error-format options to
resolve-locations and
query-repo.

	Added the --package-system subproc option, together with its
Specify Subproc Package System Executable and Specify Subproc Package System Output Format options.

	Added the --json-config global option allowing users
to use JSON config files

	Added the --list-strat option to resolve-locations, allowing users to have their dependencies listed in a sane
order.

Changed

Fixed

	JSON/EDN output for query-repo erroneously listed the subcommand as
resolve-locations. Fixed.

1.11.0 [https://github.com/djhaskin987/degasolv/compare/1.10.0...1.11.0]

Added

	Added the --meta option to
generate-card

	Added metadata a la --meta to the apt package system (experimental)

	Added the edn output format option for
the resolve-locations subcommand

	Added the --output-format option to the query-repo
command

Changed

	Overhauled the documentation option look and feel; ensured that
options themselves had a linking target (header)

1.10.0 [https://github.com/djhaskin987/degasolv/compare/1.9.0...1.10.0]

Added

	Added the --output-format option to
resolve-locations

1.9.0 [https://github.com/djhaskin987/degasolv/compare/1.8.0...1.9.0]

Added

	Added the pessimistic greater-than comparison operator ><.

Fixed

	Removed validation from the config file option, allowing it to be a URL or
anything else.

	If no arguments are given, the help screen is now printed instead of a wierd
error.

1.8.0 [https://github.com/djhaskin987/degasolv/compare/1.7.0...1.8.0]

Added

	Distribution is now done via RPM and Debian package as well as JAR fil

	Added the --version-comparison option to
generate-repo-index (option here), resolve-locations (option here)
and query-repo (option here), allowing the user to specify which
version comparison algorithm is used.

	Added the --search-strat option to resolve-locations, allowing users to select breadth first
search or depth first search during resolution

	Added the matches operator (<>REGEX) which
matches a version against a regex

	Added the in-range operator (=>V) which
matches a version against a certain range of indexes

	Added the ability to specify --present-package multiple times using the
same package name, but different versions. This is useful for when the
:conflict-strat is set to inclusive.

	Added tests testing to make sure that unsuccessful runs generate the proper
error messages.

Changed

	Reorganized the unit tests.

	Alphabetized the options for generate-card.

	Alphabetized the options for generate-repo-index.

Fixed

	Fixed bug wherein if the conflict strategy is set to :inclusive
and a package satisfying a requirement is already found or present,
it is used instead of finding a new one.

	Fixed CLI of display-config so that
it actually works as advertised, LOLZ

	Fixed the CLI output of --help so that default values
of options are shown again :)

	Refreshed the CLI output of --help for all the subcommands
as posted in the docs

1.7.0 [https://github.com/djhaskin987/degasolv/compare/1.6.0...1.7.0]

Added

	Added --option-pack, the ability to specify multiple
options at once

Fixed

	Fixed how default options work, they no longer override stuff
found in the config file (ouch)

	Fixed output of printed warning when configuration file is not used

1.6.0 [https://github.com/djhaskin987/degasolv/compare/1.5.1...1.6.0]

Added

	Formatted docs better on the front page for PDF purposes

	Add ability to use any (long) option on the command line in
display-config

Improved

	Memoized core Degasolv package system repository function (should
speed the resolver up a bit)

	Changed apt reop function from filtering a list to lookup in a map,
increasing its speed

1.5.1 [https://github.com/djhaskin987/degasolv/compare/1.5.0...1.5.1]

Added

	In just ~15 seconds, it slurps in a rather large apt repository
Packages.gz file. In another ~45 seconds, it resolves the
ubuntu-desktop package, spitting out a grand total of 797 packages
with their locations.

Fixed

	While using the apt data and package system to profile Degasolv, I
found some rather nasty bugs. This release fixes them. This tool is
now ready for prime time.

1.5.0 [https://github.com/djhaskin987/degasolv/compare/1.4.0...1.5.0]

Added

	Added the --disable-alternatives option and the --enable-alternatives
option for debugging purposes.

1.4.0 [https://github.com/djhaskin987/degasolv/compare/1.3.0...1.4.0]

Added

	Added the --present-package option and
the --package-system option to the
resolve-locations subcommand. This was so
that Degasolv could be profiled using apt package repos
(real-world data) and thereby have its performance optimized.

1.3.0 [https://github.com/djhaskin987/degasolv/compare/1.2.0...1.3.0]

Added

	Add standard input as a file type. All options which take a file name may now
have - given as the filename, to specify that standard in should be used.

1.2.0 [https://github.com/djhaskin987/degasolv/compare/1.1.0...1.2.0]

Added

	Added the ability to specify multiple configuration files,
thus allowing for site-wide configuration.

1.1.0 [https://github.com/djhaskin987/degasolv/compare/1.0.2...1.1.0]

Added

	Added the --conflict-strat option to the
resolve-locations subcommand.

	Added docs and tests.

1.0.2

	This isn’t the first release, but for the purposes of these docs, it is :D

Degasolv Command Reference

This guide describes the Degasolv CLI, what subcommands and options
there are, and what they are for. It also describes how to specify
options.

Some Notes on Versions

	On a best-effort basis, features have had the version that they first
appeared associated with them in this guide.

	Anything tagged with version 1.0.2 really means “1.0.2 or
earlier”. The history gets shaky before that :)

	The first version of Degasolv (for the purposes of this guide)
released was 1.0.2 .

	As of version 1.3.0, All options which take a file name may now have
- given as the filename, to specify that standard in should be
used.

	The earliest usable released version of Degasolv that can be
recommended for use is 1.5.1 . Anything before that wasn’t profiled,
and had some pretty bad bugs in it.

Top-Level CLI

Top-Level Usage Page

Running degasolv -h will yield
a page that looks something like this:

Usage: degasolv <options> <command> <<command>-options>

Options are shown below, with their default values and
 descriptions. Options marked with `**` may be
 used more than once.

-c, --config-file FILE ./degasolv.edn Config file location **
-j, --json-config FILE JSON config file location **
-k, --option-pack PACK Specify option pack **
-h, --help Print this help page

Commands are:

 - display-config
 - generate-card
 - generate-repo-index
 - resolve-locations
 - query-repo

Simply run `degasolv <command> -h` for help information.

Note

In this guide, for brevity, the reference is presented
as if the command to execute Degasolv were simply degasolv rather
than the more correct java -jar degasolv-<version>-standalone.jar. A
bash or batch script can easily be made to turn one command into the other,
and the change was made to the former form for clarity.

A Note on Specifying Files

As of version 1.3.0, The whenever an option takes a file in Degasolv,
the user can actually specify one of three things:

	An http:// or https:// URL. Prior to version 2.2.0, no
authentication was supported. As of version 2.2.0, authentication
can be specified in one of three ways:

	HTTP Basic Authentication: You can specify a URL-encoded username
and password to use HTTP basic authentication by separating the
username and password via a : (colon) character and put the
entire thing before the @ character in the URL. For example:

https://username:password@example.com/...

	OAuth2 Token Authentication: You can specify a URL-encoded
OAuth2 token [https://tools.ietf.org/html/rfc6750] by simply specifying one string before the @ in
any given URL, without any separators, like this:

https://thisisthetoken@example.com/...

	Header-Based Authentication: You can specify a custom HTTP
header, together with its URL encoded value, by separating the
header name from the value of the header with an = (equals) sign
before the @ in any given URL, like this:

https://X-Auth-Token=feefiefofum@example.com/...

This would yield a HTTP GET request with the following header:

X-Auth-Token: feefiefofum

As of version 2.2.0, query strings as part of the HTTP URL are also
supported.

	A file:// URL.

	A filesystem reference.

	The character -, signifying standard input to the Degasolv process.

This is true for options of Degasolv and options for any of its subcommands.

Explanation of Options

There are lots of options to degasolv and a few ways in which to specify them.
This section details the ways by which they should be specified.

Global Options

Degasolv parses global options before it parses subcommands or the options for
subcommands; therefore, global options need to be specified first. If any
option, whether global or for a subcommand is given incorrectly, the program
exits with a return code of 1.

Environment Variables

Every option in Degasolv has a corresponding environment variable which, if
set, will be consulted for the value of that option. Each option in
this document will have its corresponding environment variable listed next
to it.

	Options which take a boolean value must be specified as true` or ``false`,
as in ``export DEGASOLV_ALTERNATIVES=true.

	Options which take a list will be specified as a single string of values
separated by the caret (^) character, as in
export DEGASOLV_REQUIREMENTS=a^b^c.

	The :meta option is the only option that takes a map or dictionary of
values. In this option, keys and values are separated by the equals sign
(=) and the list of key/value pairs are also separated by the caret
character, as in k=v^k=v^k=v...

Note

The environment variables and their formatting will be
listed for the options of all the subcommands in this document;
however, environment variables can only be used with Degasolv version
2.2.0 or greater. This point bears special emphasis. Lots of config
options say they were released in earlier versions. This is true; however,
the only format of config file available for use was the EDN config file
type before version 1.12.0 of Degasolv.

Using Configuration Files

Configuration files may be specified at the command line before specifying any
subcommands, or in the DEGASOLV_CONFIG_FILES and/or the
DEGASOLV_JSON_CONFIG_FILES environemnt. The config file structure is
designed so that any command-line option may be set in the config file instead,
and vice versa. More information can be found at edn-config and
json-config below.

In addition, config files may be specified either in the EDN format or JSON
format. Multiple config files may be specified. “Mixing and matching” of JSON
and EDN config files is supported. For more information, see the
Multiple Configuration Files section.

How Options are Gathered

First, the DEGASOLV_CONFIG_FILES and DEGASOLV_JSON_CONFIG_FILES
environment variables are consulted to find any configuration files.

Next, the options in the configuration files are consulted and are merged onto
each other in the order given in those variables, first EDN files and then JSON
files. The last config file encountered “wins” for any given key for which
multiple files specify a value.

These options are then added to and overridden by any values in environment
variables, and finally added to and overridden by any values found
by consulting the command line options.

Basic EDN Configuration Usage

	Short option

	-c FILE

	Long option

	--config-file FILE

	Environment variable

	DEGASOLV_CONFIG_FILES=f1^f2^f3

	Version introduced

	1.0.2

A config file may be specified at the command line. The config file is
in the EDN format [https://github.com/edn-format/edn]. As a rule, any option for any sub-command may be
given a value from this config file, using the keyword form of the
argument. For example, instead of running this command:

degasolv \
 generate-repo-index --search-directory /some/directory \
 [...]

A configuration file that looks like this could be used instead:

;; filename: config.edn
{
 :search-directory "/some/directory"
}

With this command:

degasolv \
 --config-file "$PWD/config.edn" \
 generate-repo-index [...]

Notable exceptions to this rule include options which may be
specified multiple times. These options are named using singular
nouns (e.g. --repository REPO), but their corresponding
configuration file keys are specified using plural nouns (e.g.,
:repositories ["REPO1", ...]).

So, instead of using this
command:

degasolv \
 resolve-locations \
 --disable-alternatives \
 --present-package "x==0.1" \
 --present-package "y==0.2" \
 --repository "https://example.com/repo1/" \
 --repository "https://example.com/repo2/" \
 --requirement "a" \
 --requirement "b"
 [...]

This configuration file might be used:

; filename: config.edn
{
 :alternatives false
 :respositories ["https://example.com/repo1/"
 "https://example.com/repo2/"]
 :requirements ["a"
 "b"]
 :present-packages ["x==0.1"
 "y==0.2"]
}

With this command:

degasolv \
 --config-file "$PWD/config.edn" \
 resolve-locations \
 [...]

Basic JSON Configuration Usage

	Short option

	-j FILE

	Long option

	--json-config FILE

	Environment variable

	DEGASOLV_JSON_CONFIG_FILES=f1^f2

	Version introduced

	1.12.0

Any config file option that can be specified using EDN may also be specified
using the JSON format [https://github.com/clojure/data.json]. The only difference is that a plain string should be
used as the key for the config option instead of an EDN keyword.

For example, instead of using this config file:

; filename: config.edn
{
 :alternatives false
 :respositories ["https://example.com/repo1/"
 "https://example.com/repo2/"]
 :id "x"
 :version "1.0.0"
 :requirements ["a"
 "b"]
 :present-packages ["x==0.1"
 "y==0.2"]
}

With this command:

degasolv \
 --config-file "$PWD/config.edn" \
 resolve-locations \
 [...]

This JSON config file may be used instead:

{
 "alternatives": false,
 "repositories": ["https://example.com/repo1/"
 "https://example.com/repo2/"],
 "id": "x",
 "version": "1.0.0",
 "requirements": ["a"
 "b"],
 "present-packages": ["x==0.1"
 "y==0.2"]
}

The command to use the above JSON config file would look like this:

degasolv \
 --json-config "$PWD/config.json" \
 resolve-locations \
 [...]

Using Multiple Configuration Files

As of version 1.2.0, the --config-file option may be specified multiple
times. As of version 1.12.0, the --json-config option may also be
specified, and it too may be multiple times. As of version 2.2.0,
configuration files can be specified using the DEGASOLV_CONFIG_FILES
and DEGASOLV_JSON_CONFIG_FILES environment variables.

Degasolv processes JSON config files together with EDN config
files. Each configuration file specified will get its configuration
merged into the previously specified configuration files, whether those
files be EDN or JSON. The exception is for environment variables;
the EDN files specified in the environment will be consulted first, followed by
the JSON config files specified in the environment, followed by any
configuration files on the command line whether JSON or EDN. If both
configuration files contain the same option, the option specified in the latter
specified configuration file will be used.

As an example, consider the following display-config command:

DEGASOLV_JSON_CONFIG_FILES="$PWD/y.json" \
DEGASOLV_CONFIG_FILES="$PWD/x.edn" \
degasolv \
 --config-file "$PWD/a.edn" \
 --json-config "$PWD/j.json" \
 --config-file "$PWD/b.edn" \
 display-config

If this is the contents of the file x.edn:

{
 :conflict-strat "inclusive"
 :error-format false
}

And this were the contents of the file y.json:

{
 "conflict-strat": "prioritized",
 "error-format": true
}

And this is the contents of the file a.edn:

{
 :index-strat "prioritized"
 :repositories ["https://example.com/repo1/"]
 :id "a"
 :version "1.0.0"
}

And this were the contents of j.json:

{
 "id": "j",
 "alternatives": false,
 "requirements": ["x", "y"]
}

And this were the contents of b.edn:

{
 :repositories ["https://example.com/repo2/"]
 :id "b"
 :version "2.0.0"
 :requirements []
}

Then the output of the above command would look like this:

{
 :alternatives false
 :error-format true
 :index-strat "priority"
 :repositories ["https://example.com/repo2/"]
 :id "b"
 :version "2.0.0"
 :conflict-strat "prioritized"
 :requirements []
 :arguments ["display-config"]
}

Note

The JSON config file keys and their formatting will be
listed for the options of all the subcommands in this document;
however, JSON config files can only be used with Degasolv version 1.12.0
or greater. This point bears special emphasis. Lots of config options say
they were released in earlier versions. This is true; however, the only
format of config file available for use was the EDN config file type before
version 1.12.0 of Degasolv.

Default Configuration Files

All previous versions prior to 2.2.0 of degasolv will look for a file called
./degasolv.edn if no other config file was specified.

As of version 2.2.0, If no configuration files are specified, they will be
looked for in the following locations, if they exist, as if they were specified
in the following order on the command line:

	${AppData}/degasolv/config.edn

	${AppData}/degasolv/config.json

	${HOME}/.degasolv.edn

	${HOME}/.degasolv.json

	./degasolv.edn

	./degasolv.json

Using Site-Wide Configuration Files

The merging of config files, together with the interesting
fact that config files may be specified via HTTP/HTTPS URLs,
allows the user to specify a site config file.

Multiple sub-commands have options which fundamentally change how Degasolv
works. These are --conflict-strat, --index-strat, --resolve-strat
and --search-strat. It is therefore recommended that these specific options
are specified site-wide, if they are specified at all. Specifying these in a
site config file, then serving that config file internally via HTTP(S) would
allow all instances of Degasolv to point to a site-wide file, together with a
build-specific config file, as in this example:

degasolv \
 --config-file "https://nas.example.com/degasolv/site.edn" \
 --config-file "./degasolv.edn" \
 generate-card

Also remember that config files can be specified as environment variables. For
example, the above example would look like this, if environment variables
were used:

export DEGASOLV_CONFIG_FILES="https://nas.example.com/degasolv/site.edn^./degasolv.edn"
degasolv \
 generate-card

Here is a version of that example that uses JSON instead:

export DEGASOLV_JSON_CONFIG_FILES="https://nas.example.com/degasolv/site.json^./degasolv.json"
degasolv \
 generate-card

Security Considerations

Some configuration items in Degasolv, such as URLs that point to config files
and repository indexes, may have passwords or API tokens in-line in the URL.
As an admin, you’re going to have to figure out how you want to get sensitive
information of this kind into the configuration for Degasolv to consume.

There are three main ways to do this for the purposes of security:

	
	Environment Variable: Any option in Degasolv can be specified using

	environment variables. See the environment-variables section.

	
	Standard Input: Degasolv configuration can be specified using

	standard input. This is probably the most secure and least convenient
way of providing sensitive information to Degasolv. Here is
an example:

degasolv -j - << DEGASOLV_CONFIG
<CONFIG ITEMS HERE>
DEGASOLV_CONFIG

	
	Configuration File: This method is somewhat secure as long

	as the filesystem is deemed trustworthy and as long as the proper
file permissions are in place so that the credentials can only be viewed
by approved users.

	
	CLI: This is not normally secure, but Degasolv leaves the decision

	of what is sufficiently secure to the user, and allows sensitive
information to be specified on the command line in the normal way
in an effort to make extra, extra sure the tool is usable even
in a firestorm (read: even in the presence of bizarre use cases).

Option Packs

	Short option

	-k PACK

	Long option

	--option-pack PACK

	EDN config file key

	:option-packs ["PACK1",...]

	JSON config file key

	"option-packs": ["PACK1",...],

	Environment variable

	DEGASOLV_OPTION_PACKS="P1^P2^..."

	Version introduced

	1.7.0

Specify one or more option packs. The commandline version
of this option may be specified multiple times.

Degasolv ships with several “option packs”, each of which imply
several Degasolv options at once. When an option pack is specified,
Degasolv looks up which option pack is used and what options are
implied by using it. More than one option pack may be specified.

Prior to version 2.2.0, If option packs were specified both on the command line
and in the config file, the option packs on the command line are used and the
ones in the config file were ignored.

As of version 2.2.0, Option packs are “expanded” into
the options they imply on the level in which they are specified, where in a
particular configuration file, in the environment, or on the commandline. Then
options are merged according to the usual rules – first configuration files
are merged (see Multiple Configuration Files on how they are merged), then
environment variables, and finally commandline options.

The following option packs are supported in the current version:

	v1: Added as of version 2.0.0 . Implies --list-strat as-set and
--disable-error-format. This pack was added to help support legacy
deployments of Degasolv. It should be noted that to achieve full
compatibility with Degasolv version 1, the argument --version-comparison
maven should be used as well as this option pack. It could not be included
in the option pack due to complications with the version comparison option
and its relationship to how the --package-system option is affected by
it.

	multi-version-mode: Added as of version 1.7.0 . Implies
--conflict-strat inclusive, --resolve-strat fast, and
--disable-alternatives.

	firstfound-version-mode: Added as of version 1.7.0 . Implies
--conflict-strat prioritized, --resolve-strat fast, and
--disable-alternatives.

Print the Help Page

	Short option

	-h

	Long option

	--help

	Version introduced

	1.0.2

-h, --help: Prints the help page. This can be used on every
sub-command as well.

CLI for display-config

Usage Page for display-config

Running degasolv display-config -h
returns a page that looks something like this:

Usage: degasolv <options> display-config <display-config-options>

Options are shown below. Default values are marked as <DEFAULT> and
 descriptions. Options marked with `**` may be
 used more than once.

 --search-directory DIR . Find degasolv cards here
 --index-file FILE index.dsrepo The name of the repo file
 --index-strat STRAT priority May be 'priority' or 'global'.
 --requirement REQ Resolve req. **
 --search-strat STRAT breadth-first May be 'breadth-first' or 'depth-first'.
 --conflict-strat STRAT exclusive May be 'exclusive', 'inclusive' or 'prioritized'.
 --repository INDEX Search INDEX for packages. **
 --enable-alternatives Consider all alternatives (default)
 --id ID ID (name) of the package
 --query QUERY Display packages matching query string.
 --disable-alternatives Consider only first alternatives
 --add-to INDEX Add to repo index INDEX
 --card-file FILE ./out.dscard The name of the card file
 --present-package PKG Hard present package. **
 --resolve-strat STRAT thorough May be 'fast' or 'thorough'.
 --location LOCATION URL or filepath of the package
 --package-system SYS degasolv May be 'degasolv' or 'apt'.
 --version-comparison CMP semver May be 'debian', 'maven', 'naive', 'python', 'rpm', 'rubygem', or 'semver'.
 --version VERSION Version of the package
 -h, --help Print this help page

Overview of display-config

This subcommand introduced as of version 1.6.0.

The display-config command is used to print all the options in the
effective configuration. It allows the user to debug configuration
by printing the actual configuration used by Degasolv after all the
command-line arguments and config files have been merged together. An
example of this is found in the config files section.

As of version 1.6.0, display-config accepts any valid option
in long form (--long-form) which is accepted by any other
subcommand. This enables the user to print out the effective
configuration resulting from multiple config files as well
as any options that might be given on the CLI.

As of version 2.0.0, display-config honors the setting of
--output-format, if given in the configuration or on the command line: It
will output JSON if set to json, EDN if set to edn or what it printed
before version 2.0.0 (pretty EDN) if set to plain.

CLI for generate-card

Usage Page for generate-card

Running degasolv generate-card -h
returns a page that looks something like this:

Usage: degasolv <options> generate-card <generate-card-options>

Options are shown below. Default values are marked as <DEFAULT> and
 descriptions. Options marked with `**` may be
 used more than once.

 -C, --card-file FILE ./out.dscard The name of the card file
 -i, --id ID ID (name) of the package
 -l, --location LOCATION URL or filepath of the package
 -m, --meta K=V Add additional metadata
 -r, --requirement REQ List requirement **
 -v, --version VERSION Version of the package
 -h, --help Print this help page

The following options are required for subcommand `generate-card`:

 - `-i`, `--id`, or the config file key `:id`.
 - `-v`, `--version`, or the config file key `:version`.
 - `-l`, `--location`, or the config file key `:location`.

Overview of generate-card

This subcommand introduced as of version 1.0.2.

This subcommand is used to generate a card file. This card file is
used to represent a package within a Degasolv repository. It is placed
in a directory with other card files, and then the
generate-repo-index command is used to search that directory for
card files to produce a repository index.

Explanation of Options for generate-card

Specify Location of the Card File

	Short option

	-C FILE

	Long option

	--card-file FILE

	EDN config file key

	:card-file "FILE"

	JSON config file key

	"card-file": "FILE"

	Environment variable

	DEGASOLV_CARD_FILE="FILE"

	Version introduced

	1.0.2

Specify the name of the card file to generate. It is best practice
to name this file after the name of the file referred to by the package’s
location with a .dscard extension. For example, if I created a card
using the option --location http://example.com/repo/a-1.0.zip,
I would name the card file a-1.0.zip.dscard, as in
--card-file a-1.0.zip.dscard. By default, the card file is named
out.dscard.

Specify the ID (Name) of the Package

	Short option

	-i ID

	Long option

	--id ID

	EDN config file key

	:id "ID"

	JSON config file key

	"id": "ID",

	Environment variable

	DEGASOLV_ID="ID"

	Version introduced

	1.0.2

Required. Specify the ID of the package described in the card
file. The ID serves both as a unique identifier for the package and
its name. It may be composed of any characters other than the
following characters: <>=!,;|.

Specify the Location of the Package

	Short option

	-l LOCATION

	Long option

	--location LOCATION

	EDN config file key

	:location "LOCATION"

	JSON config file key

	"location": "LOCATION",

	Environment variable

	DEGASOLV_LOCATION="LOCATION"

	Version introduced

	1.0.2

Required. Specify the location of the file associated with the
package to be described in the generated card file. Degasolv does
not place any restrictions on this string; it can be anything,
including a file location or a URL.

Specify Additional Metadata for a Package

	Short option

	-m K=V

	Long option

	--meta K=V

	EDN config file key

	:meta {:key1 "value1" ...}

	JSON config file key

	"meta": {"key1": "value1", ...},

	Environment variable

	DEGASOLV_META="k1=v1^k2=v2..."

	Version introduced

	1.11.0

Specify additional metadata about the package within the card
file. This metadata will stay with the package information in its card
file. It will also be printed with other package information about the
package when the package is printed after dependency resolution when
resolve-locations subcommand is called, provided that the
output-format option is also used in a mode other than plain.

This is a powerful feature allowing the operator to build tooling on
top of Degasolv. For example, now the operator may store the sha256
sum of the artifact, the location of its PGP signature, a list of
scripts useful in the build contained within the artifact, etc.

For key/value pairs specified on the command line, keys are turned
into EDN keywords (e.g., :K) internally and values are simply
taken as strings. Additional metadata can also be specified from a
configuration file as well. When they are specified via config file,
they may be any data type allowed by EDN.

Key/value pairs specified via configuration file must be children of
the top-level :meta key, like this:

{
 ...
 :meta {
 :sha256sum "sumsumsum"
 :otherkey "suchvalue"
 :key3 ["values", "can", "be", "lists"]
 :key4 {:key1 "or",
 :key2 "maps"}
 }
}

If used from the config file, the map’s keys and values will be
placed directly in to the card file. If keys :id, :version
:location, or :requirements are specified in the config
file, or keys id=, version=, location=, or
requirements= on the CLI, they will be ignored.

Specify a Requirement for a Package

	Short option

	-r REQ

	Long option

	--requirement REQ

	EDN config file key

	:requirements ["REQ1", ...]

	JSON config file key

	"requirements": ["REQ1", ...],

	Environment variable

	DEGASOLV_REQUIREMENTS="r1^r2..."

	Version introduced

	1.0.2

List a requirement (dependency) of the package in the card file. May
be specified one or more times as a command line option, or once as a
list of strings in a configuration file. See Specifying a requirement for more information.

Specify a Version for a Package

	Short option

	-v VERSION

	Long option

	--version VERSION

	EDN config file key

	:version "VERSION"

	JSON config file key

	"version": "VERSION",

	Environment variable

	DEGASOLV_VERSION="VERSION"

	Version introduced

	1.0.2

Required. Specify the name of the package described in the card
file.

Print the generate-card Help Page

	Short option

	-h

	Long option

	--help

	Version introduced

	1.0.2

Print a help page for the subcommand generate-card.

CLI for generate-repo-index

Usage Page for generate-repo-index

Running degasolv generate-repo-index -h
returns a page that looks something like this:

Usage: degasolv <options> generate-repo-index <generate-repo-index-options>

Options are shown below. Default values are marked as <DEFAULT> and
 descriptions. Options marked with `**` may be
 used more than once.

 -a, --add-to INDEX Add to repo index INDEX
 -d, --search-directory DIR . Find degasolv cards here
 -I, --index-file FILE index.dsrepo The name of the repo file
 -O, --index-sort-order ORDER descending May be 'ascending' or 'descending'.
 -V, --version-comparison CMP maven May be 'debian', 'maven', 'naive', 'python', 'rpm', 'rubygem', or 'semver'.
 -h, --help Print this help page

Overview of generate-repo-index

This subcommand introduced as of version 1.0.2.

This subcommand is used to generate a repository index file. A
repository index file lists all versions of all packages in a
particular Degasolv repository, together with their locations. This
file’s location, whether by file path or URL, would then be given to
resolve-locations and query-repo commands as Degasolv
repositories.

Explanation of Options for generate-repo-index

Specify the Repo Search Directory

	Short option

	-d DIR

	Long option

	--search-directory DIR

	EDN config file key

	:search-directory "DIR"

	JSON config file key

	"search-directory": "DIR",

	Environment variable

	DEGASOLV_SEARCH_DIRECTORY="DIR"

	Version introduced

	1.0.2

Look for Degasolv card files in this directory. The directory will be
recursively searched for files with the .dscard extension and
their information will be added to the index. Default value is the
present working directory (.).

Specify the Repo Index File

	Short option

	-I FILE

	Long option

	--index-file FILE

	EDN config file key

	:index-file "FILE"

	JSON config file key

	"index-file": "FILE",

	Environment variable

	DEGASOLV_INDEX_FILE="FILE"

	Version introduced

	1.0.2

Write the index file at the location FILE. Default value is
index.dsrepo. It is good practice to use the default value.

Specify the Index Sort Order

	Short option

	-O ORDER

	Long option

	--index-sort-order ORDER

	EDN config file key

	:index-sort-order "ORDER"

	JSON config file key

	"index-sort-order": "ORDER",

	Environment variable

	DEGASOLV_INDEX_SORT_ORDER="ORDER"

	Version introduced

	2.1.0

Specify that the packages within the index should be sorted by version number
in either descending or ascending order. This has a significant impact
on which version Degasolv chooses during dependency resolution.

Degasolv “trusts” the index. The index lists versions packages under a
particular package name in a particular order, and Degasolv tries packages
according to the order found in the index. This means that if the list of
available package versions for any particular package name are sorted in
descending order by version, then Degasolv will try the latest versions first.
This is almost always what admins want in most dependency settings, and so has
been the default for Degasolv before version 2.1.0 .

However, with the advent of golang’s use of Minimum Version Selection [https://research.swtch.com/vgo-mvs], a use
case has arisen for picking the smallest version first as part of resolution.

As of version 2.1.0, specific performance enhancements (internally labelled
“version suggestion”), together with the option to specify an ascending
version index sort order, allows the admin to ask Degasolv to practice
minimum version selection.

Specify the Version Comparison Algorithm

	Short option

	-V CMP

	Long option

	--version-comparison CMP

	EDN config file key

	:version-comparison "CMP"

	JSON config file key

	"version-comparison": "CMP",

	Environment variable

	DEGASOLV_VERSION_COMPARISON="CMP"

	Version introduced

	1.8.0

Use the specified version comparison algorithm when generating the
repository index. When repository indexes are generated, lists of
packages representing different versions of each named package are
created within the index. These lists are sorted in descending order
by version number, so that the latest version of a given package is
tried first when resolving dependencies.

This option allows the operator to change what version comparison algorithm is
used. May be debian, maven, naive, python, npm,
rubygem, or semver. As of version 2.0, the default algorithm is
semver.

Caution

This is one of those options that should not be used
unless the operator has a good reason, but it is available
and usable if needed.

Note

This option should be used with care, since whatever setting
is used will greatly alter behavior. Similar options are availabe
for the resolve-locations subcommand and the query-repo
subcommand. They should all agree when used within the same
site. It is therefore recommended that whichever setting is chosen
should be used site-wide within an organization.

Add to an Existing Repository Index

	Short option

	-a INDEX

	Long option

	--add-to INDEX

	EDN config file key

	:add-to "INDEX"

	JSON config file key

	"add-to": "INDEX",

	Environment variable

	DEGASOLV_ADD_TO="INDEX"

	Version introduced

	1.0.2

Add to the repository index file found at INDEX. In general, it is
best to simply regenerate a new repository index fresh based on the
card files found in a search directory; however, it may be useful to
use this option to generate a repository file incrementally.

For example, a card file might be generated during a build, then added
to a repository index file in the same build script:

#!/bin/sh

degasolv generate-card \
 -i "a" -v "1.0.0" -l "http://example.com/repo/a-1.0.0.zip" \
 -C "a-1.0.0.zip.dscard"

degasolv generate-repo-index \
 -I "new-index.dsrepo" -a "http://example.com/repo/index.dsrepo" \
 -d "."

rsync -av a-1.0.0.zip.dscard user@example.com:/var/www/repo/
rsync -av new-index.dsrepo user@example.com:/var/www/repo/index.dsrepo

In this example, a card file is generated. Then, a new repository is
generated based on an existing index and a newly generated card
file. Then it is copied up to the repo server, replacing the old
index. The card file is copied up as well to preserve the record in
the search directory on the actual repository server so that a
repository index could be generated on the server in the usual way
later.

INDEX may be a URL or a filepath. Both HTTP and HTTPS URLs are
supported. As of version 1.3.0, an INDEX may be specified as
-, the hyphen character. If INDEX is -, Degasolv will read
standard input instead of any specific file or URL.

CLI for resolve-locations

Usage Page for resolve-locations

Running degasolv resolve-locations -h
returns a page that looks something like this:

Usage: resolve-locations <options>

Options are shown below. Default values are listed with the
 descriptions. Options marked with `**` may be
 used more than once.

 -a, --enable-alternatives Consider all alternatives (default)
 -A, --disable-alternatives Consider only first alternatives
 -e, --search-strat STRAT breadth-first May be 'breadth-first' or 'depth-first'.
 -g, --enable-error-format Enable output format for errors (default)
 -G, --disable-error-format Disable output format for errors
 -f, --conflict-strat STRAT exclusive May be 'exclusive', 'inclusive' or 'prioritized'.
 -L, --list-strat STRAT lazy May be 'as-set', 'lazy' or 'eager'.
 -o, --output-format FORMAT plain May be 'plain', 'edn' or 'json'
 -p, --present-package PKG Hard present package. **
 -r, --requirement REQ Resolve req. **
 -R, --repository INDEX Search INDEX for packages. **
 -s, --resolve-strat STRAT thorough May be 'fast' or 'thorough'.
 -S, --index-strat STRAT priority May be 'priority' or 'global'.
 -t, --package-system SYS degasolv May be 'degasolv', 'apt', or 'subproc'.
 -u, --subproc-output-format FORMAT json Whether to read `edn` or `json` from the exe's output
 -V, --version-comparison CMP maven May be 'debian', 'maven', 'naive', 'python', 'rpm', 'rubygem', or 'semver'.
 -x, --subproc-exe PATH Path to the executable to call to get package data
 -h, --help Print this help page

The following options are required:

 - `-R`, `--repository`, or the config file key `:repositories`.
 - `-r`, `--requirement`, or the config file key `:requirements`.

Overview of resolve-locations

This subcommand introduced as of version 1.0.2.

The resolve-locations command searches one or more repository
index files, and uses the package information in them to attempt to
resolve the requirements given at the command line. If successful, it
exits with a return code of 0 and outputs the name of each package in
the solution it has found, together with that package’s location.

If the command fails because of dependency resolution problems, an exit code of
3 is returned. The output from such a run might look like this:

The resolver encountered the following problems:

Clause: e>=1.1.0,<2.0.0
- Packages selected:
 - b==2.3.0 @ https://example.com/repo/b-2.3.0.zip
 - d==0.8.0 @ https://example.com/repo/d-0.8.0.zip
- Packages already present:
 - x==0.1.0 @ already present
 - y==0.2.0 @ already present
- Alternative being considered: e>=1.1.0,<2.0.0
- Package in question was found in the repository, but cannot be used.
- Package ID in question: e

As shown above, a list of clauses is printed. Each clause is an
alternative (part of a requirement) that the resolver could not
fulfill or resolve. Each field is explained as follows:

	Packages selected: This is a list of packages found in order to
resolve previous requirements before the “problem” clause was
encountered.

	Packages already present: Packages which were given to Degasolv
using the present package option. If none were specified,
this will show as None.

	Alternative being considered: This field displays what
alternative from the requirement was being currently considered
when the problem was encountered.

	The next field gives a reason for the problem.

	Package ID in question: This field displays the package searched for
when the problem was encountered.

Explanation of Options for resolve-locations

Enable the Use of Alternatives

	Short option

	-a

	Long option

	--enable-alternatives

	EDN config file key

	:alternatives true

	JSON config file key

	"alternatives": true,

	Environment variable

	DEGASOLV_ALTERNATIVES="true"

	Version introduced

	1.5.0

Consider all alternatives encountered while resolving dependencies.
This is the default behavior. It allows the developers and packagers
to decide whether or not to use alternatives. As alternatives are
generally expensive to resolve, packagers should of course use them
with caution. If this option occurs together with the
--disable-alternatives option on a command line, the last argument
of the two specified wins.

Disable the Use of Alternatives

	Short option

	-A

	Long option

	--disable-alternatives

	EDN config file key

	:alternatives false

	JSON config file key

	"alternatives": false,

	Environment variable

	DEGASOLV_ALTERNATIVES="false"

	Version introduced

	1.5.0

Consider only the first of any given set of alternatives for any
particular requirement while resolving dependencies. It allows the package
consumer to debug dependency resolution issues. This is especially useful
when alternatives are used frequently in specifying requirements by
packagers, thus causing performance issues on the part of the package
consumers; or, when trying to figure out why dependencies won’t resolve
properly. If this option occurs together with the --enable-alternatives
option on a command line, the last argument of the two specified wins.

Note

Use of this option defeats the purpose of Degasolv supporting alternatives
in the first place. This option is intended generally for use
when debugging a build. If it is used routinely, it should be used
site-wide.

Specify Solution Search Strategy

	Short option

	-e STRAT

	Long option

	--search-strat STRAT

	EDN config file key

	:search-strat "STRAT"

	JSON config file key

	"search-strat": "STRAT",

	Environment variable

	DEGASOLV_SEARCH_STRAT="STRAT"

	Version introduced

	1.8.0

This option determines whether breadth first search or depth first
search is used during package resolution. Valid values are
depth-first to specify depth-first search or breadth-first
to specify breadth-first search. This option is set to
breadth-first by default.

Specify Conflict Strategy

	Short option

	-f STRAT

	Long option

	--conflict-strat STRAT

	EDN config file key

	:conflict-strat "STRAT"

	JSON config file key

	"conflict-strat": "STRAT",

	Environment variable

	DEGASOLV_CONFLICT_STRAT="STRAT"

	Version introduced

	1.1.0

This option determines how encountered version conflicts will be
handled. Valid values are exclusive, inclusive, and
prioritized. The default setting is exclusive and this setting
should work for most environments.

Note

This option should be used with care, since whatever setting is
used will greatly alter behavior. It is therefore recommended that
whichever setting is chosen should be used site-wide within an
organization.

	If set to exclusive, all dependencies and their version
specifications must be satisfied in order for the command to
succeed, and only one version of each package is allowed. This is
the default option, and is the safest, though it may carry with it
significant performance ramifications. It turns dependency
resolution into an NP hard problem. This is normally not a problem
since the number of dependencies at most organizations (on the
order of hundreds) is relatively small, but it is something of which the
reader should be aware.

	If set to inclusive, all dependencies and their version specifications
must be satisfied in order for the command to succeed, but multiple versions
of each package are allowed to be part of the solution. To call for
similar behavior to ruby’s gem or node’s npm, for example, set
--conflict-strat to inclusive and set --resolve-strat
to fast. This can be easily and cleanly specified done by using the
multi-version-mode option pack.

	If set to prioritized, then the first time a package is required and
is found at a particular version, it will be considered to fulfill the
all other encountered requirements asking for that package. This is
intended to mimic the behavior of java’s maven package manager.

It means that, for example, if package a at version 1
requires package b at version 1 and also package c at
version 1; and package c at version 1 requires package
b at version 2; then the packages a at version 1,
the package b at version 1, and the package c at
version 1 will be found. Despite the fact that c needed
b to be at version 2, it had already been found at version
1 and that version was assumed to fulfill all requirements asking
for package b.

To mimic the behavior of maven, set --conflict-strat to
prioritized and --resolve-strat to fast. This can be
easily and cleanly specified done by using the
firstfound-version-mode option pack.

Specify List Strategy

	Short option

	-L STRAT

	Long option

	--list-strat STRAT

	EDN config file key

	:list-strat "STRAT"

	JSON config file key

	"list-strat": "STRAT",

	Environment variable

	DEGASOLV_LIST_STRAT="STRAT"

	Version introduced

	1.12.0

This option determines how packages will be listed once they are resolved.
Valid values are as-set, lazy, and eager. As of version 2.0.0,
the default value is lazy.

When the value is as-set, packages are listed in no particular order.

When the value is lazy or eager, packages are listed according to
the following rules:

	Barring cases of circular dependency, the child dependencies of
any package are always listed before the package they depend on.

	Circular dependencies are handled properly, but which dependency comes
first is not guaranteed in all cases. In these cases the resolver
must choose which dependency to ignore when it sees both. It choses
to ignore the “deeper” dependency rather then the “shallower” package
in the package resolution graph. So, for example, if package a relies
on package b and package b relies on package a, but a is
encountered first, the dependency from a to b will be honored but
the dependency from b to a will be ignored when deciding in what
order to list packages.

	Otherwise, dependee packages will be listed in the order that the
requirements they fulfill are listed. This means that, all things being
equal, a package resolving one requirement of a parent package will be
printed before a package resolving a different requirement of a
different package listed further down in the requirements list for the
parent package.

For example, if a Degasolv card file called “steel” is made using the
below config file:

{
 :requirements ["wool", "wood", "sheep"]
}

When resolved, the represented package would be printed (or
appear in the json or edn output, if output-format is
set) in this order:

wool==1.0 @ http://example.com/repo/wool-1.0.zip
wood==1.0 @ http://example.com/repo/wood-1.0.zip
sheep==1.0 @ http://example.com/repo/sheep-1.0.zip
steel==1.0 @ http://example.com/repo/steel-1.0.zip

It is worth noting that command line arguments are listed in
reverse order. Thus, generating a card file with arguments -r
wool -r wood -r sheep would yield a list that looks like this:

sheep==1.0 @ http://example.com/repo/sheep-1.0.zip
wood==1.0 @ http://example.com/repo/wood-1.0.zip
wool==1.0 @ http://example.com/repo/wool-1.0.zip
steel==1.0 @ http://example.com/repo/steel-1.0.zip

The difference between these options is that lazy will list dependencies
as late as possible while following the above rules, while a value of eager
tells Degasolv to list dependencies as early as possible while
following the above rules.

Enable Error Output Format

	Short option

	-g

	Long option

	--enable-error-format

	EDN config file key

	:error-format true

	JSON config file key

	"error-format": true,

	Environment variable

	DEGASOLV_ERROR_FORMAT="true"

	Version introduced

	1.12.0

This option extends the functionality of output-format to include
when errors happen as well.

Normally, when the output-format key is specified, such as to cause
Degasolv to emit JSON or EDN, this only happens if the command runs
successfully. If package resolution was unsuccessful, an error message
is printed to standard error and the program exits with non-zero
return code. If error-format is specified, then any error
information will be printed in the form of whatever output-format
specifies to standard output, while still maintaining the same exit
code.

When error information is returned via JSON or EDN, the keys are the same
in the dictionary, except:

	The result key now has the value of unsuccessful.

	The packages key is not present.

	A new key, problems, appears in place of the packages key containing
information describing what went wrong.

As of version 2.0, the default behavior is to have :error-format enabled.

Disable Error Output Format

	Short option

	-G

	Long option

	--disable-error-format

	EDN config file key

	:error-format false

	JSON config file key

	"error-format": false,

	Environment variable

	DEGASOLV_ERROR_FORMAT="false"

	Version introduced

	1.12.0

This option sets the :error-format flag to false.

Specify Output Format

	Short option

	-o FORMAT

	Long option

	--output-format FORMAT

	EDN config file key

	:output-format "FORMAT"

	JSON config file key

	"output-format": "FORMAT",

	Environment variable

	DEGASOLV_OUTPUT_FORMAT="FORMAT"

	Version introduced

	1.10.0; EDN introduced 1.11.0

Specify an output format. May be plain, edn or json. This
output format only takes effect when the package resolution was
successful.

The default output format is plain. It is a simple text format
that was designed for ease of use within bash scripts while also
being somewhat pleasant to look at.

Example output on a successful run when the format is set to plain:

c==3.5.0 @ https://example.com/repo/c-3.5.0.zip
d==0.8.0 @ https://example.com/repo/d-0.8.0.zip
e==1.8.0 @ https://example.com/repo/e-1.8.0.zip
b==2.3.0 @ https://example.com/repo/b-2.3.0.zip

In the above example out, each line takes the form:

<id>==<version> @ <location>

When the output format is JSON, the output would spit out a JSON
document containing lots of different keys and values representing
some of the internal state Degasolv had when it resolved
the packages. Among those keys will be a key called “packages”, and it will
look something like this:

{
 "command": "degasolv",
 "subcommand": "resolve-locations",
 "options": {
 "requirements": [
 "b"
],
 "resolve-strat": "thorough",
 "index-strat": "priority",
 "conflict-strat": "exclusive",
 "search-directory": ".",
 "package-system": "degasolv",
 "output-format": "json",
 "version-comparison": "maven",
 "index-file": "index.dsrepo",
 "repositories": [
 "./index.dsrepo"
],
 "search-strat": "breadth-first",
 "alternatives": true,
 "present-packages": [
 "x==0.9.0",
 "e==1.8.0"
],
 "card-file": "./out.dscard"
 },
 "result": "successful",
 "packages": [
 {
 "id": "d",
 "version": "0.8.0",
 "location": "https://example.com/repo/d-0.8.0.zip",
 "requirements": [
 [
 {
 "status": "present",
 "id": "e",
 "spec": [
 [
 {
 "relation": "greater-equal",
 "version": "1.1.0"
 },
 {
 "relation": "less-than",
 "version": "2.0.0"
 }
]
]
 }
]
]
 },
 {
 "id": "c",
 "version": "3.5.0",
 "location": "https://example.com/repo/c-3.5.0.zip",
 "requirements": []
 },
 {
 "id": "b",
 "version": "2.3.0",
 "location": "https://example.com/repo/b-2.3.0.zip",
 "requirements": [
 [
 {
 "status": "present",
 "id": "c",
 "spec": [
 [
 {
 "relation": "greater-equal",
 "version": "3.5.0"
 }
]
]
 }
],
 [
 {
 "status": "present",
 "id": "d",
 "spec": null
 }
]
]
 }
]
}

If the output format is EDN, the output will be similar, except it will use
the EDN format:

{
 :command "degasolv",
 :subcommand "resolve-locations",
 :options {
 :requirements ("a<=1.0.0"),
 :resolve-strat "thorough",
 :index-strat "priority",
 :conflict-strat "exclusive",
 :search-directory ".",
 :package-system "degasolv",
 :output-format "edn",
 :version-comparison "maven",
 :index-file "index.dsrepo",
 :repositories (
 "./index.dsrepo"
),
 :search-strat "breadth-first",
 :alternatives true,
 :card-file "./out.dscard"
 },
 :result :successful,
 :packages #{
 #degasolv.resolver/PackageInfo {
 :id "b",
 :version "2.3.0",
 :location "https://example.com/repo/b-2.3.0.zip",
 :requirements []
 },
 #degasolv.resolver/PackageInfo {
 :id "a",
 :version "1.0.0",
 :location "https://example.com/repo/a-1.0.0.zip",
 :requirements [
 [
 #degasolv.resolver/Requirement {
 :status :present,
 :id "b",
 :spec nil
 }
]
]
 }
 }
}

The output, if the format is not plain, will have the following
top-level keys in it:

	command: This is will be degasolv.

	subcommand: This will reflect what subcommand was specified.
In the current version, this will always be resolve-locations.

	options: This shows what options were given when Degasolv was
run. Its contents should roughly reflect the output of display-config
when run with similar options.

	result: This displays whether the run was successful or
not. Since unsuccessful runs result in a printed error and not
outputted JSON, this will be successful. At present, to
determine whether a run was successful, use the return code of
Degasolv rather than this key.

	packages: This displays the list of packages and, if present,
any additional meta-data associated with the package.

Specify that a Package is Already Present

	Short option

	-p PKG

	Long option

	--present-package PKG

	EDN config file key

	:present-packages ["PKG1", ...]

	JSON config file key

	"present-packages": ["PKG1", ...],

	Environment variable

	DEGASOLV_PRESENT_PACKAGES="P1^..."

	Version introduced

	1.4.0

Specify a “hard present package”. Specify PKG as <id>==<vers>,
as in this example: garfield==1.0.

Doing this tells Degasolv that a package “already exists” at a
particular version in the system or build, whatever that means. This
means that when Degasolv encounters a requirement for this package, it
will assume the package is already found and it will mark the
dependency as resolved. On the other hand, Degasolv will not try to
change or update the found package. If the version of the present
package conflicts with requirements encountered, resolution of those
requirements may fail.

This is another one of those options that is provided and, if needed,
is meant to benefit the user; however, judicious use is
recommended. If you don’t know what you’re doing, you probably don’t
want to use this option.

For example, if this option is used to tell Degasolv that, as part of
a build, some packages have already been downloaded, Degasolv will not
recommend that those packages be upgraded. This is the “hard” in “hard
present package”: If the user specifies via --present-package that
a package is already found and usable, Degasolv won’t try to find a
new version for it; it assumes “you know what you’re doing” and that
the package(s) in question are not to be touched.

Specify a Requirement

	Short option

	-r REQ

	Long option

	--requirement REQ

	EDN config file key

	:requirements ["REQ1", ...]

	JSON config file key

	"requirements": ["REQ1", ...],

	Environment variable

	DEGASOLV_REQUIREMENTS="R1^R2^..."

	Version introduced

	1.0.2

Required. Resolve this requirement together with all other
requirements given. May be specified one ore more times as a command
line option, or once as a list of strings in a configuration file. See
Specifying a requirement for more information.

The last requirement specified will be the first to be resolved. If
the requirements are retrieved from the config file, they are resolved
in order from first to last in the list. If requirements are
specified both on the command line and in the configuration file, the
requirements in the configuration file are ignored.

Specify a Repository to Search

	Short option

	-R INDEX

	Long option

	--repository INDEX

	EDN config file key

	:repositories ["INDEX1", ...]

	JSON config file key

	"repositories": ["INDEX1", ...],

	Environment variable

	DEGASOLV_REPOSITORIES="I1^I2^..."

	Version introduced

	1.0.2

Required. Search the repository index given by INDEX for packages
when resolving the given requirements.

When the index strategy is priority The last repository index
specified will be the first to be consulted. If the repository indices
are retrieved from the config file, they are consulted in order from
first to last in the list. If indices are specified both on the
command line and in the configuration file, the indices in the
configuration file are ignored. See index strategy for more
information.

INDEX may be a URL or a filepath pointing to a *.dsrepo
file. For example, index might be
http://example.com/repo/index.dsrepo. Both HTTP and HTTPS URLs are
supported. As of version 1.1.0, If INDEX is - (the hyphen character), Degasolv will
read standard input instead of any specific file or URL. Possible use
cases for this include downloading the index repository first via some
other tool (such as cURL [https://curl.haxx.se/]). One reason users might do this is if
authentication is required to download the index, as in this example:

curl --user username:password https://example.com/degasolv/index.dsrepo | \
 degasolv resolve-locations -R - "req"

Specify a Resolution Strategy

	Short option

	-s STRAT

	Long option

	--resolve-strat STRAT

	EDN config file key

	:resolve-strat "STRAT"

	JSON config file key

	"resolve-strat": "STRAT",

	Environment variable

	DEGASOLV_RESOLVE_STRAT="I1^..."

	Version introduced

	1.0.2

This option determines which versions of a given package id are
considered when resolving the given requirements. If set to fast,
only the first available version matching the first set of
requirements on a particular package id is consulted, and it is hoped
that this version will match all subsequent requirements constraining
the versions of that id. If set to thorough, all available
versions matching the requirements will be considered. The default
setting is thorough and this setting should work for most
environments.

Note

This option should be used with care, since whatever setting
is used will greatly alter behavior. It is therefore recommended
that whichever setting is chosen should be used site-wide within
an organization.

Specify an Index Strategy

	Short option

	-S STRAT

	Long option

	--index-strat STRAT

	EDN config file key

	:index-strat "STRAT"

	JSON config file key

	"index-strat": "STRAT",

	Environment variable

	DEGASOLV_INDEX_STRAT="STRAT"

	Version introduced

	1.0.2

Repositories are queried by package id in order to discover what
packages are available to fulfill the given requirements. This option
determines how multiple repository indexes are queried if there are
more than one. If set to priority, the first repository that
answers with a non-empty result is used, if any. Note that this is
true even if the versions don’t match what is required.

For example, if <repo-x> contains a package a at version
1.8, and <repo-y> contains a package a at version 1.9,
then the following command wil fail:

java -jar ./degasolv-<version>-standalone.jar -R <repo-x> -R <repo-y> \
 -r "a==1.9"

While, on the other hand, this command will succeed:

java -jar ./degasolv-<version>-standalone.jar -R <repo-y> -R <repo-x> \
 -r "a==1.9"

By contrast, if --index-strat is given the STRAT of global,
all versions from all repositories answering to a particular package
id will be considered. So, both of the following commands would
succeed, under the scenario presented above:

java -jar ./degasolv-<version>-standalone.jar -S global \
 -R <repo-x> -R <repo-y> -r "a==1.9"

java -jar ./degasolv-<version>-standalone.jar -S global \
 -R <repo-y> -R <repo-x> -r "a==1.9"

The default setting is priority and this setting should work for
most environments.

Note

This option should be used with care, since whatever setting
is used will greatly alter behavior. It is therefore recommended
that whichever setting is chosen should be used site-wide within
an organization.

Specify a Package System

	Short option

	-t SYS

	Long option

	--package-system SYS

	EDN config file key

	:package-system "SYS"

	JSON config file key

	"package-system": "SYS",

	Environment variable

	DEGASOLV_PACKAGE_SYSTEM="SYS"

	Version introduced

	1.4.0

Specify package system to use. By default, this
value is degasolv. This causes the Degasolv’s resolve-locations
command to behave normally.

Other available values are shown below.

The “apt” Package System

Experimental. The apt package system resolves using the APT
debian package manager. When using this method, specify
repositories using the format:

{binary-amd64|binary-i386} <url> <dist> <pool>

Or, in the case of naive apt repositories:

{binary-amd64|binary-i386} <url> <relative-path>

For example, I might use the repository option like this:

degasolv resolve-locations \
 -R "binary-amd64 https://example.com/ubuntu/ /"
 -t "apt" \
 --requirement "ubuntu-desktop"

Or this:

degasolv resolve-locations \
 -R "binary-amd64 https://example.com/ubuntu/ yakkety main" \
 -R "binary-i386 https://example.com/ubuntu/ yakkety main" \
 -t "apt" \
 --requirement "ubuntu-desktop"

Degasolv does not currently support APT dependencies
between machine architectures, as in python:i386. Also,
every Degasolv repo is currently architecture-specific; each
repo has an associated architecture, even if that architecture
is any.

The “subproc” Package System

The subproc package system allows the user to give Degasolv
package information via a subprocess (shell-out) command. A path
to an executable on the filesystem is given via the subproc-exe option. For
each repository specified via the repository option, the subproc executable
path is executed with the string given for the repository as its only argument.
The executable is expected to print out JSON or EDN to standard output,
depending on the value of the subproc-output-format option.

The output should be a dictionary of packages listed by name. The value for
each dictionary key should be an array of dictionaries, with each dictionary
giving information about a particular package instance. Within each package
instance dictionary, there should exist the keys id for the package name,
version for its version, and location giving its location. Any
requirements for the package instance should be listed under the
requirements key according to the rules laid out in Specifying a requirement.

This information will then be read into Degasolv and used to resolve
dependencies.

If the format is JSON, which is the default, the output should be of the form:

{
 "pkgname": [
 {
 "id": "pkgname",
 "version": "p.k.g-version",
 "location": "pkg-url",
 "requirements": ["birch>=3.3", "lime|lemon"],
 <optional kv-pairs associated with package>
 }
],
 "otherpkgname": [...]
}

If the format is EDN, the output should be of the form:

{
 "pkgname" [
 # The following will be referred
 {
 :id "pkgname"
 :version "p.k.g-version"
 :location" "pkg-url"
 :requirements ["birch>=3.3" "lime|lemon"]
 <optional kv-pairs associated with package>
 }
]
 "otherpkgname" [...]
}

Any additional kv-pairs specified in a package’s record as shown
above will appear in the resolution output if the output-format
option is set to something other than plain.

If the executable exits with a non-zero error status code, Degasolv
will print an error message looking like the following and also exit
with a non-zero status code:

Error while evaluating repositories: Executable
`<path-to-exe>` given argument
`<repository-string>` exited with non-zero status `1`.

The resolver will search for packages in the order
given in the output of the executable. Unless you
have a good reason not to, you should list packages
under the name of the package in the data structure
on standard out in version-descending order.

Specify Subproc Package System Output Format

	Short option

	-u FORMAT

	Long option

	--subproc-output-format FORMAT

	EDN config file key

	:subproc-output-format "FORMAT"

	JSON config file key

	"subproc-output-format": "FORMAT",

	Environment variable

	DEGASOLV_SUBPROC_OUTPUT_FORMAT="F"

	Version introduced

	1.12.0

This option only takes effect if the subproc choice was listed for
the package-system option. It says whether the executable used by Degasolv
to get information needed to resolve dependencies will come in the form of an EDN
or a JSON document. This option is set to json by default. See package-system
docs for more information.

Specify the Version Comparison Algorithm

	Short option

	-V CMP

	Long option

	--version-comparison CMP

	EDN config file key

	:version-comparison "CMP"

	JSON config file key

	"version-comparison": "CMP",

	Environment variable

	DEGASOLV_VERSION_COMPARISON="CMP"

	Version introduced

	1.8.0

Use the specified version comparison algorithm when resolving
dependencies.

This option allows the operator to change what version comparison
algorithm is used. By default, the algorithm is “maven”. May be
“debian”, “maven”, “naive”, “python” (PEP 440), “rpm”, “rubygem”, or
“semver” (2.0.0). Version comparison algorithms are taken from the
Serovers library. Descriptions for these algorithms can be found in
the Serovers docs [http://djhaskin987.gitlab.io/serovers/serovers.core.html].

Caution

This is one of those options that should not be used
unless the operator has a good reason, but it is
available and usable if needed.

Note

This option should be used with care, since whatever setting
is used will greatly alter behavior. Similar options are availabe
for the generate-repo-index subcommand and the query-repo
subcommand. They should all agree when used within the same
site. It is therefore recommended that whichever setting is
chosen should be used site-wide within an organization.

Specify Subproc Package System Executable

	Short option

	-x PATH

	Long option

	--subproc-exe PATH

	EDN config file key

	:subproc-exe "PATH"

	JSON config file key

	"subproc-exe": "PATH",

	Environment variable

	DEGASOLV_SUBPROC_EXE="PATH"

	Version introduced

	1.12.0

This option only takes effect if the subproc choice was listed for
the package-system option; however, it is required if the
subproc choice was listed. It lists the path to the executable to
use to get resolution information. See package-system docs for more
information.

CLI for query-repo

Usage Page for query-repo

Running degasolv query-repo -h returns a
page that looks something like this:

Usage: degasolv <options> query-repo <query-repo-options>

Options are shown below. Default values are marked as <DEFAULT> and
 descriptions. Options marked with `**` may be
 used more than once.

 -g, --enable-error-format Enable output format for errors (default)
 -G, --disable-error-format Disable output format for errors
 -q, --query QUERY Display packages matching query string.
 -R, --repository INDEX Search INDEX for packages. **
 -S, --index-strat STRAT priority May be 'priority' or 'global'.
 -t, --package-system SYS degasolv May be 'degasolv' or 'apt'.
 -V, --version-comparison CMP maven May be 'debian', 'maven', 'naive', 'python', 'rpm', 'rubygem', or 'semver'.
 -h, --help Print this help page

The following options are required for subcommand `query-repo`:

 - `-R`, `--repository`, or the config file key `:repositories`.
 - `-q`, `--query`, or the config file key `:query`.

Overview of query-repo

This subcommand introduced as of version 1.0.2.

This subcommand queries a repository index or indices for
packages. This comand is intended to be useful or debugging dependency
problems. If errors occur relative to finding packages in the repository,
as opposed to errors occuring because incorrect arguments were given,
a return code of 2 is returned to the calling program (likely a shell).

Explanation of Options for query-repo

Enable Error Output Format

	Short option

	-g

	Long option

	--enable-error-format

	EDN config file key

	:error-format true

	JSON config file key

	"error-format": true,

	Environment variable

	DEGASOLV_ERROR_FORMAT="true"

	Version introduced

	1.12.0

This option extends the functionality of output-format to include
when errors happen as well.

Normally, when the output-format key is specified, such as to cause
Degasolv to emit JSON or EDN, this only happens if the command runs
successfully. If querying the repo was unsuccessful, an error message
is printed to standard error and the program exits with non-zero
return code. If error-format is enabled, then any error
information will be printed in the form of whatever output-format
specifies to standard output, while still maintaining the same exit
code.

When error information is returned via JSON or EDN, the keys are the same
in the dictionary, except:

	The result key now has the value of unsuccessful.

	The packages key is not present.

	A new key, problems, appears in place of the packages key containing
information describing what went wrong.

As of version 2.0, the default behavior is to have :error-format enabled.

Disable Error Output Format

	Short option

	-G

	Long option

	--disable-error-format

	EDN config file key

	:error-format false

	JSON config file key

	"error-format": false,

	Environment variable

	DEGASOLV_ERROR_FORMAT="false"

	Version introduced

	1.12.0

This option sets the :error-format flag to false.

Specify Output Format

	Short option

	-o FORMAT

	Long option

	--output-format FORMAT

	EDN config file key

	:output-format "FORMAT"

	JSON config file key

	"output-format": "FORMAT"

	Environment variable

	DEGASOLV_OUTPUT_FORMAT="FORMAT"

	Version introduced

	1.11.0

Specify an output format. May be plain, edn or json. By
default the output format is plain. This output format only takes
effect when the query returns a non-empty set of results. This is
exactly like the output-format option for resolve-locations,
except that the subcommand field is new returned as
query-repo.

Specify Query

	Short option

	-q QUERY

	Long option

	--query QUERY

	Config file key

	N/A

	Version introduced

	1.0.2

Required. Query repository index or indices for a package. Syntax
is exactly the same as requirements except that only one alternative
may be specified (that is, using the | character or specifying
multiple package ids), and the requirement must specify a present
package (no ! character may be used either). See Specifying a
requirement for more information.

Examples of valid queries:

	"pkg"

	"pkg!=3.0.0"

Examples if invalid queries:

	"a|b"

	"!a"

Specify a Repository to Search

	Short option

	-R INDEX

	Long option

	--repository INDEX

	EDN config file key

	:repositories ["INDEX1", ...]

	JSON config file key

	"repositories": ["INDEX1", ...],

	Environment variable

	DEGASOLV_REPOSITORIES="I1^I2^..."

	Version introduced

	1.0.2

Required This option works exactly the same as the repository
option for the resolve-locations command, except that instead of
using the repositories for resolving requirements, it uses them for
simple index queries. See that option’s explanation for more
information.

Specify an Index Strategy

	Short option

	-S STRAT

	Long option

	--index-strat STRAT

	EDN config file key

	:index-strat "STRAT"

	JSON config file key

	"index-strat": "STRAT",

	Environment variable

	DEGASOLV_INDEX_STRAT="STRAT"

	Version introduced

	1.0.2

This option works exactly the same as the index strategy option for the
resolve-locations command, except that it is used for simple index
queries. See that option’s explanation for more information.

Specify a Package System

	Short option

	-t SYS

	Long option

	--package-system SYS

	EDN config file key

	:package-system "SYS"

	JSON config file key

	"package-system": "SYS",

	Environment variable

	DEGASOLV_PACKAGE_SYSTEM="SYS"

	Version introduced

	1.4.0

This option works exactly the same as the package system option for
the resolve-locations command, except that it is used for simple
index queries. See that option’s explanation for more information.

Specify the Version Comparison Algorithm

	Short option

	-V CMP

	Long option

	--version-comparison CMP

	EDN config file key

	:version-comparison "CMP"

	JSON config file key

	"version-comparison": "CMP",

	Environment variable

	DEGASOLV_VERSION_COMPARISON="CMP"

	Version introduced

	1.8.0

Use the specified version comparison algorithm when querying the
repository.

This option allows the operator to change what version comparison
algorithm is used. By default, the algorithm is “maven”. May be
“debian”, “maven”, “naive”, “python” (PEP 440), “rpm”, “rubygem”, or
“semver” (2.0.0). Version comparison algorithms are taken from the
Serovers library. Descriptions for these algorithms can be found in
the Serovers docs [http://djhaskin987.gitlab.io/serovers/serovers.core.html].

Caution

This is one of those options that should not be used
unless the operator has a good reason, but it is available
and usable if needed.

Note

This option should be used with care, since whatever setting
is used will greatly alter behavior. Similar options are availabe
for the generate-repo-index subcommand and the
resolve-locations subcommand. They should all agree when used
within the same site. It is therefore recommended that whichever
setting is chosen should be used site-wide within an
organization.

Specifying a requirement

Unless otherwise noted, features in this section were introduced as
of version 1.0.2 or earlier.

A requirement is given as a string of text. A requirement consists of
one or more alternatives. Any of the alternatives will satisfy the
requirement. Alternatives are specified by a bar character (|),
like this:

"<alt1>|<alt2>|<alt3>"

Or, more concretely:

"hickory|maple|oak"

Alternatives will be considered in order of appearance.

Caution

In general, specifying more than one alternative is
mostly unecessary, and should generally be avoided. This
is because specifying too many alternatives tends to
impact performance significantly; but they are available
and usable if needed.

Each alternative is composed of a package id and an optional specification of
what versions of that package satisfy the alternative, like this:

"<pkgid><version spec>"

For example:

"hickory>=3.0"

A version spec is a boolean expression of version predicates describing what
versions may satisfy the alternative. The character ; represents discution
(OR) and the character , represents conjunction (AND), like this:

"<pred1>,<pred2>;<pred3>,<pred4>"

This is interpreted as:

"(<pred1> AND <pred2>) OR (<pred3> AND <pred4>)"

For example, this expression:

"spruce>=1.0.0,<2.0.0;>=3.0.0,<4.0.0"

Is interpreted as:

"spruce at version ((>=1.0.0 AND <2.0.0) OR (>=3.0.0 AND <4.0.0))"

Comparison Operators

Each version predicate is composed of a comparison operator and a valid version
against which to compare a package’s version. The character sequences <,
<=, !=, ==, >=, and > represent the comparisons “older
than”, “older than or equal to”, “not equal to”, “equal to”, “newer than or
equal to”, and “newer than”, respectively, using whatever version comparison
algorithm was specified using the CLI, or using the maven version comparison
algorithm by default.

In addition to the above operators, three other version spec operators are
provided:

	The “matches” operator: <>. Introduced of version
1.8.0. This operator is given in a version spec as
<>REGEX. The version of any package found during the
resolution process must match the given java regular
expression [http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html]. Examples:

	The expression <>\d+\.\d+\.\d+ matches any version containing a
three-part version in it.

	The expression <>f[ea]{2}ture matches any version
containing the strings “feature”, “faeture”, “feeture” or
“faature”.

	The “in-range” operator: =>. Introduced as of version
1.8.0. This operator is given in a version spec
as =>RANGE. The version of any package found during the resolution
process must be in the given version range. Examples:

	The expression =>3.x matches the versions 3.0.0, 3.0.0.0
and 3.0 but not 4.0 or higher.

	The expression =>3.3.x matches the versions 3.3.0, 3.3.8
and 3.3.8.99999 but not 3.4.0.

Ranges are calculated in the following way:

	Any non-digit characters found on the end of the RANGE string are
removed.

	All digit characters found on the end of the RANGE string are
converted into a number and incremented. The incremented number
is then put back into the version string, replacing any digit
characters that were at the end of the string before. So,
3.x becomes 4, 3. becomes 4, and 2ormore
becomes 3.

	Finally, any versions comparing greater than or equal to the
original RANGE string, but less than the incremented
version string as computed in the previous step, are
considered for dependency resolution.

	The “pessimistic greater-than” operator: ><. Introduced as of
version 1.9.0. This operator is given in a version spec as
><VERS. The version of any package found during the resolution
process must be greater or equal to the given version but less
than the next major version. Examples:

	The expression ><3.2.1 matches the versions 3.2.1, 3.4.3
but not 4.0.0 or higher, nor does it match 3.2.0.

	The expression ><3.3.3 matches the versions 3.3.3, 3.3.8
and 3.9.8 but not 4.0.0.

“The next major version” is calculated similarly to how ranges are
calculated:

	The first found set of digit characters found in the VERS
string are converted into a number and incremented. The
remainder of the version string after the incremented number
is discarded.

	Any versions comparing greater than or equal to the
original VERS string, but less this new “incremented”
version string as computed in the previous step, are
considered for dependency resolution.

Examples

The following are examples of valid alternatives, together with their english
interpretations:

	Alternative

	English Interpretation

	"oak"

	Find package oak

	"pine>1.0"

	Find package pine of version newer than
1.0

	"pine><3.4.1-alpha8"

	Find package pine of version newer than
or equal to 3.4.1-alpha8 but less than
4.

	"fir<>\\d+\\.8"

	Find package fir containing “<digits>.8”
somewhere in the version string

	"cedar=>3.x"

	Find package cedar at version greater
or equal to major component 3 but less
than 4

	"hickory>1.0,<=2.0"

	Find package hickory with version newer
than``1.0`` and older than or equal to
2.0.

	"fir<=2.0;>3.5,!=3.8"

	Find a package fir with version
(newer than 1.0 and older than or equal
to 2.0) OR (with version newer than
3.5 but not equal to 3.8)

Note

To make debugging easier, try to keep things as simple as
possible. Try not to make requirement strings very long. When using
the inclusive or priority conflict strategies, it is
recommended to specify exact package names and versions, like this:
pkgname==1.0.0. The simpler the requirement string, the easier
it will be to untangle any untoward dependency problems.

Negative alternatives are requirements that all packages with a particular id
and matching a particular version spec must be absent from the list of packages
found when resolving dependencies. To negate an alternative, prepend it with
the ! character.

For example, the following alternative means “make sure
the spruce package is not present in the list”:

!spruce

This alternative means “If package a is present in the list, make sure its
version is not in the range (3.0,4.0]”:

!a>3.0,<=4.0

The following are practical examples of requirements, together with their
interpretations.

	Requirement

	Explanation

	"oak|pine>5.0"

	Require oak at any version, or pine at
versions greater than 5.0

	"hickory>=3.0,<4.0"

	Require hickory at a 3.x version.

	"!birch|birch<=3.0"
"!birch>3.0"

	An important example. This demonstrates how to
specify what maven [https://maven.apache.org/] calls a
managed dependency [https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management].
It means if birch is required by another
package, ensure that its version is older than or
equal to 3.0. It is good practice to prefer
the expression with only one alternative.

	"!oak|maple>3.0"

	If oak is installed, then make sure maple after
version 3.0 is installed also.

	"oak|!pine"

	Require the presence of the oak package, or
the absence of the pine package.

Architecture

This article describes the overarching architecture of Degasolv, together with
some explanation about some of the design decisions.

Background

At one of my previous jobs, I was a Build Engineer – a person who built the
code that the developers wrote and made it available. I had lots of
dependency problems coming at me from all different sides:

	One module in language A depending on another from language B

	Developers working with a language (at the time) with no clear package
manager ecosystem (cough C++ cough)

	Package manager developers breaking builds with backwards-incompatible
behavior

	A dependency graph that looked like a dream catcher

So I decided to build a tool that would do these things:

	Resolve dependencies the right way, safely

	Even resolve dependency chains for different package systems (apt, pip,
java)

	Be super versatile and generic, able to be plugged into an arbitrary build
script

Core Resolver

At the core of Degasolv is a monster method called resolve-dependencies [https://github.com/djhaskin987/degasolv/blob/develop/src/degasolv/resolver_core.clj#L519]. It
is a rather large method with a backtracking SAT-solver-ish design. Originally
it was written to have a conflict-strat of exclusive
and a resolve-strat of thorough hard-coded. In other
words, the “first class” original use case of Degasolv was a SAT-solver-class
depedency resolver that only allowed a single version of any dependency, and
ensured that all parties depending on that dependency had a chance to agree on
what was chosen. These options were later added to allow Degasolv to act more
like maven and give any Building Engineer using Degasolv useful “handbreaks” to
change how resolution was being done in-house so that it could be modified to
conform to business needs. Other options, such as list-strat<list-strat> and
search-strat<search-strat> were added as time progressed as well for similar
reasons, and also, frankly, to fix bugs (behaviors that were never originally
intended).

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age,
body size, disability, ethnicity, gender identity and expression, level of
experience, nationality, personal appearance, race, religion, or sexual
identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at “djhaskin987 at gmail.com” . All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant homepage [http://contributor-covenant.org],
version 1.4 [http://contributor-covenant.org/version/1/4/].

Contributing Guide

Thank you so much for considering contribution to Degasolv!

First, please read the Degasolv Contributor Covenant Code of Conduct. This project
will not take any contribution coming from those who do not abide by
the code of conduct. This means that if a person is currently under
disciplinary action via avenues set forth in that document, we will
ignore your PR and/or any issues you may log.

A contribution can be large or small, code or non-code. To make a
contribution, first log a GitHub issue. Talk about what you want, and
ask for other’s opinions.

When you go to make the PR, please use the following checklist to test
whether or not it is likely to be accepted:

	Is it based on the ``develop`` branch? Degasolv uses the
git-flow [http://nvie.com/posts/a-successful-git-branching-model/] framework for branch management. Please make PRs to the
develop branch.

	Do you have tests in your PR, and do they pass? Tests are in
two places in Degasolv: the test/degasolv directory, where more
or less normal unit tests reside; and the
test/resources/scripts directory, where scripty-integration
tests reside. You must have at least a script test (and preferrably one or
more unit tests) as a “spot-check” of your feature if the PR is to be
merged. The test need not be elaborate; a simple test is better than no
tests.

	Is your PR backwards compatible? The biggest feature Degasolv
provides is backwards compatibility.

We only consider backwards incompatible changes
in the form of new options for the “correct” behavior and switching the
default for that option in a new version, ideally a major version.

If Degasolv breaks a build, it is a bug. If it breaks a build in a way
that can’t be fixed by configuration, it is a bad bug.

A good test if a PR is “backwards compatible”
is if 1) it changes any previously merged script test and 2)
if it breaks any of them.

	Did you add documentation around the feature in your PR?
Generally this at least means adding something to the Degasolv Command Reference document.

	Did you add an entry to the Changelog? This project keeps a
curated changelog.

There are some exceptions to the above rules. For example, if your patch is
less than two lines’ difference from the previous version, your PR may be a
“typo” PR, which may qualify to get around some of the above rules. Just ask
the team on your GitHub issue.

Roadmap

This file outlines what we plan on doing to democratize dependency management.
It may or may not actually be implemented in the future, but represents a guide
for contributors and users alike as to the hopes and vision for the future of
the Degasolv developers.

Future Releases

	Tutorial-like help screens designed to keep people from needing to switch
from docs to cli and back.

	Shortened versions of all subcommands, including documentation updates.

	Documentation and/or code on the topic of supporting the use case of
different architectures of the same package using prioritized indexes of
packages named the same with different contents.

	Compile with GraalVM’s ``native-image``: Compile degasolv to machine
code with GraalVM’s native-image to decrease start-up times. This will likely
coincide with upgrading to Clojure 1.11 because native-image doesn’t work with
Clojure 1.10.1 .

2.3.0

Firefighters need tools that can apply in many situations; similarly, ops and
DevOps professionals, for whom we build this tool, need to a dependency
management tool that can get them out of dependency hell no matter what their
situation.

	The ability to slurp from JDBC URLs for indexes

	An extension will be made to ensure that username and password
can be specified along with a URL. Not all drivers support this
and it is an important use case.

	Generate-repo-index to support JDBC URLs

	query-repo and resolve-locations to support JDBC URLs

	If the database is empty or doesn’t exist, it will be created on
generate repo index or on index-add

	New subcommands: index-add, index-rm, to take away from and add to
as in an installation/removal context

	New subcommand: resolve-dependents to find all dependents in an index

	USER GUIDES

	How to use repositories as generic installation trackers

	How to track dependencies between kubernetes services

	How to track dependencies between cross-language builds and use this for
that

	Documentation and/or code on the topic of supporting the use case
of different architectures of the same package using prioritized
indexes of packages named the same with different contents.

	How to use degasolv to manage a project installation for
development purposes

Authors and Contributions

We thank everyone that has contributed to Degasolv!

Authors

	Daniel Jay Haskin

Contributions

	Logo contributed to Degasolv by James Toney

3rd Party Licenses

Degasolv is built on the shoulders of giants. Here are the licenses for the
third party software that comes with Degasolv:

commons-io - 2.6 - Apache License, Version 2.0
clojure-complete - 0.2.5 - Eclipse Public License
org.apache.httpcomponents/httpmime - 4.5.8 - Apache License, Version 2.0
potemkin - 0.4.5 - MIT License
com.fasterxml.jackson.dataformat/jackson-dataformat-smile - 2.9.9 - The Apache Software License, Version 2.0
cheshire - 5.9.0 - The MIT License
clj-http - 3.10.0 - The MIT License
org.apache.httpcomponents/httpclient - 4.5.8 - Apache License, Version 2.0
org.clojure/tools.cli - 0.3.5 - Eclipse Public License 1.0
com.fasterxml.jackson.dataformat/jackson-dataformat-cbor - 2.9.9 - The Apache Software License, Version 2.0
org.flatland/ordered - 1.5.7 - Eclipse Public License - v 1.0
tigris - 0.1.1 - Eclipse Public License
clj-tuple - 0.2.2 - MIT License
org.apache.httpcomponents/httpcore - 4.4.11 - Apache License, Version 2.0
slingshot - 0.12.2 - Eclipse Public License 1.0
org.apache.httpcomponents/httpclient-cache - 4.5.8 - Apache License, Version 2.0
org.apache.httpcomponents/httpasyncclient - 4.1.4 - Apache License, Version 2.0
org.flatland/useful - 0.11.6 - Eclipse Public License - v 1.0
com.fasterxml.jackson.core/jackson-core - 2.9.9 - The Apache Software License, Version 2.0
org.clojure/tools.reader - 0.7.2 - Eclipse Public License 1.0
org.clojure/clojure - 1.10.1 - Eclipse Public License 1.0
org.clojure/spec.alpha - 0.2.176 - Eclipse Public License 1.0
serovers - 1.6.2 - Eclipse Public License
riddley - 0.1.12 - MIT License
commons-logging - 1.2 - The Apache Software License, Version 2.0
org.apache.httpcomponents/httpcore-nio - 4.4.10 - Apache License, Version 2.0
org.clojure/tools.macro - 0.1.1 - Eclipse Public License 1.0
com.velisco/tagged - 0.5.0 - Eclipse Public License
org.clojure/core.specs.alpha - 0.2.44 - Eclipse Public License 1.0
commons-codec - 1.12 - Apache License, Version 2.0

Index

Some Useful Recipes

Audience

For the impatient.

Make a bash script to wrap the degasolv jar like this, making sure to make the
script executable:

#!/bin/sh
Filename: /usr/bin/degasolv
java -jar <location-of-degasolv.jar>/degasolv.jar "${@}"

Generate a card:

degasolv generate-card -i "name" -v "0.1.0" -l "https://example.com/repo/name-0.1.0.zip" -r "a-dep" -r "another-dep>=3.5.0" -C name-0.1.0.zip.dscard

BASH: Download each location, then its signature, and verify it:

#!/bin/sh
set -exou pipefail
degasolv resolve-locations -R ./index.dsrepo -r a -o json | \
 jq -r .packages[].location | \
 while read url
 do
 wget $url
 wget $url.asc
 gpg --verify $url.asc
 done

 _static/up.png

_images/graphviz-3f8c16ae3f65683343712083d0c655228cae6ac6.png
-0

_static/ajax-loader.gif

_images/Degasolv.png

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Degasolv

 		
 Why Degasolv?

 		
 Get Degasolv

 		
 Download & Run

 		
 Code

 		
 Support & Problems

 		
 Contributions

 		
 Quickstart

 		
 A Longer Example

 		
 Audience

 		
 The dependencies

 		
 Adding e to the degasolv repo

 		
 Adding d to the degasolv repo

 		
 Adding c to the degasolv repo

 		
 Building a

 		
 Changelog

 		
 Unreleased

 		
 Added

 		
 Changed

 		
 Fixed

 		
 2.2.0

 		
 Added

 		
 Changed

 		
 Fixed

 		
 2.1.0

 		
 Added

 		
 Changed

 		
 Fixed

 		
 2.0.0

 		
 Added

 		
 Changed

 		
 Fixed

 		
 1.12.1

 		
 Added

 		
 Fixed

 		
 1.12.0

 		
 Added

 		
 Changed

 		
 Fixed

 		
 1.11.0

 		
 Added

 		
 Changed

 		
 1.10.0

 		
 Added

 		
 1.9.0

 		
 Added

 		
 Fixed

 		
 1.8.0

 		
 Added

 		
 Changed

 		
 Fixed

 		
 1.7.0

 		
 Added

 		
 Fixed

 		
 1.6.0

 		
 Added

 		
 Improved

 		
 1.5.1

 		
 Added

 		
 Fixed

 		
 1.5.0

 		
 Added

 		
 1.4.0

 		
 Added

 		
 1.3.0

 		
 Added

 		
 1.2.0

 		
 Added

 		
 1.1.0

 		
 Added

 		
 1.0.2

 		
 Command Reference

 		
 Some Notes on Versions

 		
 Top-Level CLI

 		
 Top-Level Usage Page

 		
 A Note on Specifying Files

 		
 Explanation of Options

 		
 CLI for display-config

 		
 Usage Page for display-config

 		
 Overview of display-config

 		
 CLI for generate-card

 		
 Usage Page for generate-card

 		
 Overview of generate-card

 		
 Explanation of Options for generate-card

 		
 CLI for generate-repo-index

 		
 Usage Page for generate-repo-index

 		
 Overview of generate-repo-index

 		
 Explanation of Options for generate-repo-index

 		
 CLI for resolve-locations

 		
 Usage Page for resolve-locations

 		
 Overview of resolve-locations

 		
 Explanation of Options for resolve-locations

 		
 CLI for query-repo

 		
 Usage Page for query-repo

 		
 Overview of query-repo

 		
 Explanation of Options for query-repo

 		
 Specifying a requirement

 		
 Comparison Operators

 		
 Examples

 		
 Architecture

 		
 Background

 		
 Core Resolver

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Contributing Guide

 		
 Roadmap

 		
 Future Releases

 		
 2.3.0

 		
 Authors and Contributions

 		
 Authors

 		
 Contributions

 		
 3rd Party Licenses

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

